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Abstract.—Phylogenetic studies incorporating multiple loci, and multiple genomes, are becoming increasingly common.
Coincident with this trend in genetic sampling, model-based likelihood techniques including Bayesian phylogenetic methods
continue to gain popularity. Few studies, however, have examined model fit and sensitivity to such potentially heterogeneous
data partitions within combined data analyses using empirical data. Here we investigate the relative model fit and sensitivity
of Bayesian phylogenetic methods when alternative site-specific partitions of among-site rate variation (with and without
autocorrelated rates) are considered. Our primary goal in choosing a best-fit model was to employ the simplest model that
was a good fit to the data while optimizing topology and/or Bayesian posterior probabilities. Thus, we were not interested
in complex models that did not practically affect our interpretation of the topology under study. We applied these alternative
models to a four-gene data set including one protein-coding nuclear gene (c-mos), one protein-coding mitochondrial gene
(ND4), and two mitochondrial rRNA genes (12S and 16S) for the diverse yet poorly known lizard family Gymnophthalmidae.
Our results suggest that the best-fit model partitioned among-site rate variation separately among the c-mos, ND4, and 12S +
16S gene regions. We found this model yielded identical topologies to those from analyses based on the GTR+I+G model, but
significantly changed posterior probability estimates of clade support. This partitioned model also produced more precise
(less variable) estimates of posterior probabilities across generations of long Bayesian runs, compared to runs employing
a GTR+I+G model estimated for the combined data. We use this three-way gamma partitioning in Bayesian analyses to
reconstruct a robust phylogenetic hypothesis for the relationships of genera within the lizard family Gymnophthalmidae.
We then reevaluate the higher-level taxonomic arrangement of the Gymnophthalmidae. Based on our findings, we discuss
the utility of nontraditional parameters for modeling among-site rate variation and the implications and future directions
for complex model building and testing. [Autocorrelated gamma; Bayesian analysis; combining data; Gymnophthalmidae;
likelihood models; partitioning data; Reptilia; site-specific gamma.]

Incorporating genetic data from multiple genes, often
from multiple genomes, is becoming standard in molec-
ular phylogenetics, as is the use of complex model-based
likelihood techniques to estimate phylogenetic relation-
ships based on these data. Despite numerous authors ad-
vocating the superiority of using multiple loci (especially
from multiple genomes) to reconstruct phylogenies (e.g.,
Pamilo and Nei, 1988; Wu, 1991), few have addressed the-
oretical and practical effects of modeling sequence evo-
lution simultaneously for different genes (but see exam-
ples: Yang, 1996a; Caterino et al., 2001; Pupko et al., 2002;
Nylander et al., 2004). Using a single model with a single
set of parameters to account for evolution over multiple
loci in a combined analysis may fail to accurately por-
tray locus-specific evolutionary patterns. For instance,
protein-coding versus rRNA genes may evolve under
drastically different constraints because protein-coding
genes commonly experience particularly elevated rates
of substitution at the third positions of codons. Riboso-
mal RNA genes, on the other hand, may experience rel-
atively slow rates of compensatory change over regions
corresponding to stem-forming secondary structures in
the core of the molecule, yet generally more rapid rates
in regions corresponding to functionally unconstrained
loops and short-range stems (e.g., Dixon and Hillis, 1993;
Simon et al., 1994; Muse, 1995; Hickson et al., 1996; Sav-
ill et al., 2001). Even among protein-coding genes or
rRNA genes, different patterns of substitution rate het-
erogeneity may result from overall differential rates of
evolution or differential functional constraints on partic-

ular regions within a gene (Hickson et al., 1996; Yang,
1996b; Moncalvo et al., 2000). Considering these poten-
tial variations in evolutionary rates across sites, it seems
logical that models of molecular evolution that account
for heterogeneity with regard to among-site rate vari-
ation should be employed to reconstruct phylogenetic
trees.

The recent shift in phylogenetic methodology towards
Bayesian inference of phylogeny has heightened the
importance of the use of more realistic evolutionary
models. This is important for topological accuracy (e.g.,
Huelsenbeck, 1995; Huelsenbeck, 1997; Sullivan and
Swofford, 2001) as well as accurate estimation of poste-
rior probabilities (e.g., Buckley, 2002; Suzuki et al., 2002;
Erixon et al., 2003). In general, it has been shown that
likelihood methods are fairly robust to model choice in
their estimation of topology (Yang et al., 1994; Posada
and Crandall, 2001; Sullivan and Swofford, 2001). A ma-
jor strength of Bayesian analyses is that posterior prob-
ability distributions of trees allow direct interpretation
of the likelihood of a particular relationship recovered
being true, given the data, the model, and the priors
(although the robustness of posterior probabilities has
not been thoroughly investigated). However, because the
accuracy of posterior probabilities in Bayesian phylo-
genetic methods relies inherently on the model, mod-
els that do not affect the consensus topology may have
notable effects on the posterior probability distribution
of parameters, and thus on confidence regarding phy-
logenetic conclusions. Therefore, employing complex
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models that more accurately portray DNA evolution
should produce less biased posterior probability esti-
mates as long as parameters can be accurately estimated
from the data.

The accuracy of posterior probability estimates in
Bayesian phylogenetic reconstruction and the factors
that may affect this accuracy remain unclear. Many stud-
ies suggest Bayesian posterior probabilities appear to
be inflated compared to conventional bootstrap support
(e.g., Leaché and Reeder, 2002; Cummings et al., 2003;
Douady et al., 2003). However, the accuracy of poste-
rior probability support values in terms of both type I
and type II error remains unresolved (e.g., Buckley, 2002;
Suzuki et al., 2002; Wilcox et al., 2002; Alfaro et al., 2003).
Despite this, evidence is accumulating that suggests a
direct relationship between accuracy of posterior proba-
bilities and model complexity whereby Bayesian analy-
ses conducted with underparameterized models appear
to experience higher error rates compared with param-
eter rich models (Suzuki et al., 2002; Wilcox et al., 2002;
Erixon et al., 2003). However, benefits of constructing
and employing more realistic evolutionary models of
DNA substitution are challenged by the potential for im-
precise and inaccurate parameter estimation (including
topology) resulting from overparameterization. Given
ever-increasing computational power, in addition to the
speed afforded by Bayesian Markov Chain Monte Carlo
phylogenetic methods, the need for accurate models and
model testing is apparent.

Our primary goal in this paper is to concentrate on
evaluation of alternative models that practically affect
phylogenetic inference. Specifically, we designed our
approaches to make final decisions about best-fitting
models based on the effects they had on topology and
posterior probability estimates. This is important be-
cause although some alternative, relatively parameter-
rich models may provide a better fit to the data, they
may not result in alternative topologies or significantly
different posterior probability estimates. In such cases,
our strategy would instead favor a model with fewer
parameters that produced essentially the same topology
and posterior probability support estimates.

In this study, the genes used to reconstruct phylo-
genies are diverse and include one protein-coding nu-
clear gene (c-mos), one protein-coding mitochondrial
gene (ND4), and two rRNA mitochondrial gene frag-
ments (12S and 16S). We focused on the construction
and evaluation of models that utilize alternatively par-
titioned patterns of among-site rate variation to account
for heterogeneous evolution of multiple loci in a com-
bined phylogenetic analysis. Particularly, MrBayes v2.01
allows among-site rate variation (gamma; Yang, 1993) to
be partitioned among defined sites (site-specific gamma)
as well as allowing the use of an autocorrelated gamma
parameter to account for local autocorrelation of among-
site rates (Kimura, 1985; Schöniger and von Haeseler,
1994; Yang, 1995; Nielsen, 1997). These models allow
gamma parameter for among-site rate variation to be
rescaled across partitions while using a single rate nu-
cleotide substitution rate matrix for the entire data set.

Along with conventional models of sequence evolution
(e.g., GTR+I+G), we explore more complex models that
partition the among-site rate variation in various ways
among loci, in addition to those that employ an addi-
tional parameter for autocorrelation of site rate varia-
tion. We examine the phylogenetic hypotheses result-
ing from several alternative partitions of among-site rate
variation and discuss their relevance to Bayesian sup-
port for clades and support for alternative topological
placements of clades.

The taxonomic group examined in this study, lizards
of the family Gymnophthalmidae, comprises a large ra-
diation consisting of approximately 34 genera and 180
species occurring throughout South America with rela-
tively few species in Middle America (Pellegrino et al.,
2001; Doan, 2003a). The family is composed of small to
medium lizards that occur in a variety of habitats and
occupy a wide range of niches. This lizard group has
been poorly studied with many species unknown be-
yond their original descriptions.

Relationships of genera within the family Gymnoph-
thalmidae are poorly understood. The most comprehen-
sive and contemporary revision of the supergeneric clas-
sification of the family Gymnophthalmidae was made
by Pellegrino et al. (2001). They reconstructed a phy-
logeny of 50 species in 24 genera (recently reduced from
26 by Doan, 2003a) using five genes (two nuclear and
three mitochondrial). Based on their reconstruction they
erected four subfamilies and four tribes. The subfam-
ily Alopoglossinae, consists solely of Alopoglossus. The
subfamily Gymnophthalminae contains 13 genera, di-
vided into two tribes, the Heterodactylini (5 genera)
and the Gymnophthalmini (8 genera). The subfamily
Rhachisaurinae is monotypic, consisting of Rhachisaurus
brachylepis, a new genus separated from Anotosaura. The
final subfamily, the Cercosaurinae, consists of 20 genera
divided into tribe Cercosaurini (14 genera) and tribe Ec-
pleopini (6 genera).

Harris (2003) used c-mos sequences to reconstruct a
phylogeny of the Squamata with concentrated taxon
sampling in the Gymnophthalmidae. He primarily used
Pellegrino et al.’s (2001) sequences but added a new se-
quence of Proctoporus bolivianus. Harris’s (2003) recon-
struction differed from Pellegrino et al.’s in the placement
of Ptychoglossus, Bachia, Arthrosaura, and several smaller
scale relationships. In addition, a teiid genus, Tupinambis,
was nested within the Gymnophthalmidae as the sister
to Ptychoglossus and Alopoglossus (although this relation-
ship received bootstrap and posterior probability sup-
port below 50%).

Missing from Pellegrino et al.’s (2001) study were 10
genera. Whereas Pellegrino et al. sampled all genera
of Alopoglossinae, Rhachisaurinae, and Gymnoph-
thalmini, they lacked Stenolepis from the Heterodactylini,
Amapasaurus from the Ecpleopini, and eight genera from
the Cercosaurini. The limited taxon sampling of the Cer-
cosaurini renders conclusions about that tribe problem-
atic (see Hillis, 1998) because only half of the genera
and 18 of the approximately 121 species were sampled
(14.9%).
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In addition to limited taxon sampling, the separate
gene partitions were often in conflict with regards to the
positions and relationships of many key taxa (Pellegrino
et al., 2001). Such conflicts put into doubt the subfamilial
and/or tribal placement of genera such as Ptychoglos-
sus, Rhachisaurus, Bachia, and Neusticurus. Our study ad-
dresses some of the problems suggested in the combined
analysis of Pellegrino et al. (2001) and fills in some sig-
nificant gaps in taxon sampling. Concentrating on the
Cercosaurini, we add 19 new individuals, including 12
new species and one new genus, as well as an additional
individual of Ptychoglossus brevifrontalis (a total of 73 ad-
ditional sequences). With this greater taxon sampling
we clarify the relationships and classification within
family Gymnophthalmidae. In addition to adding more
taxa, we utilize a Bayesian approach to the phylogeny
to complement the standard parsimony and likelihood
methods used by Pellegrino et al. (2001). We synthe-
size this information, emphasizing overall phylogenetic
evidence, and propose an alternative hypothesis for
the intergeneric relationships and taxonomy within the
family.

The objectives of our study included (1) evaluating
the effects of partitioning among-site rate variation and
among-site rate autocorrelation parameters on phyloge-
netic topology and posterior probabilities for relation-
ships, (2) developing a robust strategy for choosing the
best-fit model for among-site rate variation considering
practical effects on topology and posterior probability
support, (3) identifying the most likely and robust phy-
logenetic hypothesis for relationships among gymnoph-
thalmid lizards, and (4) reevaluating the supergeneric
classification of the family based on our best estimate of
gymnophthalmid phylogeny.

METHODS

DNA Sequences Used

A significant subset of the sequences used in this study
is from Pellegrino et al. (2001) and Doan and Castoe
(2003). Additional sequences of gymnophthalmid lizards
were added to this dataset. Of the five genes used by Pel-
legrino et al. (2001), we chose to use and expand upon
four: mitochondrial NADH dehydrogenase subunit 4
(ND4), mitochondrial small subunit rRNA gene (12S),
mitochondrial large subunit rRNA gene (16S), and the
nuclear oocyte maturation factor gene (c-mos). The nu-
clear small subunit rRNA gene (18S) used by Pellegrino
et al. (2001) was omitted from our study for two reasons:
(1) low phylogenetic signal apparent from the Pellegrino
et al. (2001) study, and (2) the nuclear gene for 18S oc-
curs in hundreds or thousands of copies per nuclear
genome (e.g., humans: International Human Genome
Sequencing Consortium, 2001; Xenopus: Pardue, 1974;
Long and Dawid, 1980). Using sequences of this mul-
ticopy gene to resolve relationships principally among
species and genera within a family may increase the
potential for recovery of misleading phylogenetic esti-
mates based on incomplete gene conversion among al-
leles at different loci or differential fixation of alleles

among loci (Gasser et al., 1998; Gonzalez and Sylvester,
2001).

Laboratory methods for obtaining novel sequences
used in this study are as follows. Where possible, two in-
dividuals of each taxon from distant sampling localities
were added to the data set. Genomic DNA was isolated
from tissue samples (liver or skin preserved in ethanol)
using the Qiagen DNeasy extraction kit and protocol
(Qiagen Inc., Hilden, Germany). The mitochondrial ND4
gene was amplified via polymerase chain reaction (PCR)
using the primers ND4 and LEU as described in Arévalo
et al. (1994). Mitochondrial ribosomal small and large
subunit genes (12S and 16S) were amplified as described
in Parkinson et al. (1997, 1999). The nuclear c-mos gene
was amplified with primers G73 and G74 as described
in Saint et al. (1998) and Pellegrino et al. (2001). Positive
PCR products were excised from agarose electrophoretic
gels and purified using the GeneCleanIII kit (BIO101).
Purified PCR products were sequenced in both directions
with the amplification primers (and for ND4, an addi-
tional internal primer HIS, Arévalo et al., 1994). Samples
that could not be sufficiently sequenced directly were
cloned using the Topo TA cloning kit (Invitrogen) ac-
cording to the manufacturer’s protocols. Plasmids were
isolated from multiple clones per individual using the
Qiaquick spin miniprep kit (Qiagen). Plasmids were se-
quenced using M13 primers (provided by Topo TA kit,
Invitrogen) and, in some cases, the internal HIS primer
for ND4. Purified PCR products and plasmids were se-
quenced using the CEQ D Dye Terminator Cycle Se-
quencing (DTCS) Quick Start Kit (Beckman-Coulter) and
run on a Beckman CEQ2000 automated sequencer ac-
cording to the manufacturers’ protocols. Raw sequence
chromatographs for sequences generated in this study
were edited using Sequencher 3.1 (Gene Codes Corp.).
In cases where gene fragments were cloned, all sequences
from a single individual were edited together. Novel se-
quences were deposited in GenBank. The GenBank ac-
cession number for each gene sequence used in this study
(including novel sequences) are given in Appendix 1.

Sequence Homology and Alignment

Multiple sequence alignment was performed using
ClustalW (Thompson et al., 1994). Initial alignments
were conducted with a gap opening penalty of 10, a
gap extension penalty of 1, and a transition weight of
0.5. For rRNA genes (12S and 16S), alternative multi-
ple alignments were examined with gap opening and
gap extension penalties ranging from 10 and 10 (re-
spectively) to 1 and 1, including varying ratios in this
range. Initial alignments for protein-coding genes (ND4
and c-mos) were rechecked based on the homology of
their translated amino acid sequence using GeneDoc
(Nicholas and Nicholas, 1997). The ND4 alignment was
unambiguous and not edited manually and the c-mos
alignment was slightly manually modified to maximize
amino acid similarity over a short indel region within
the alignment. Alternative automated alignments (from
ClustalW) for rRNA genes (12S and 16S) were compared,
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along with estimates of secondary structures (Gutell,
1994; Gutell et al., 1994; Titus and Frost, 1996), to evalu-
ate evidence for positional homology. Positions in rRNA
genes where alignment was ambiguous were excluded.
To minimize the effects of missing data resulting from
incomplete sequences, all gene alignments were trun-
cated at the 5′ and 3′ ends. The final alignment of all
concatenated genes, including positions excluded from
phylogenetic analyses, is available as supplemental data
at http://biology.ucf.edu/∼clp/Lab/Lab.htm.

Phylogeny Estimation Using Maximum Parsimony

We inferred phylogenies based on the maximum parsi-
mony (MP) criterion in PAUP∗ v4.0b10 (Swofford, 2002)
and Bayesian (Markov Chain Monte Carlo, MCMC) anal-
ysis in MrBayes v2.01 (Huelsenbeck and Ronquist, 2001).
Phylogenetic inference was conducted, hierarchically,
in three steps: (1) all genes individually, (2) intermedi-
ate partitions including both rRNA genes (12S + 16S)
and all mitochondrial genes (mtgenes), and (3) the com-
bined concatenated data set including all four genes.
For MP analyses of independent genes and intermedi-
ate partitions, we conducted equally weighted parsi-
mony searches using the heuristic strategy with 200 ran-
dom taxon addition sequence replicates. Settings for MP
analyses were tree bisection-reconnection branch swap-
ping, steepest descent off, and MULTREES option on
(Swofford, 2002). For all individual genes and interme-
diate partitions (rRNA and mtgenes), we assessed sup-
port for clades using 200 nonparametric bootstrap pseu-
doreplicates (Felsenstein, 1985) with 20 random taxon
addition sequence replicates implemented with PAUP∗.
For the combined MP analysis of all genes, we searched
for trees using equally weighted parsimony heuristic
searches with 1000 random taxon addition sequence
replicates and assessed clade support with 200 bootstrap
pseudoreplicates with 200 random addition sequence
replicates per bootstrap pseudoreplicate. We consider re-
lationships that are supported by at least 70% bootstrap
to be significantly resolved (Hillis and Bull, 1993).

Bayesian Phylogeny Estimation

ModelTest version 3.0 (Posada and Crandall, 1998)
was used to infer the best-fit model of evolution for
each gene data set (individual genes, intermediate par-
titions, and total combined data) based on hierarchical
log-likelihood ratio tests comparing successively com-
plex models (Huelsenbeck and Crandall, 1997; Posada
and Crandall, 2001).

All MCMC phylogenetic reconstructions were con-
ducted in MrBayes v2.01 (Huelsenbeck and Ronquist,
2001) with vague priors (as per the program’s defaults)
and model parameters estimated as part of the analyses.
Three heated chains and a single cold chain were used
in all MCMC analyses and runs were initiated with ran-
dom trees, as per the program’s defaults. Trees were sam-
pled every 100 generations and majority rule consensus
phylograms and posterior probabilities for nodes were
assembled from all post burn-in sampled trees. Phylo-

genetic reconstructions for all data partitions were es-
timated using three independent runs to confirm that
stationarity (or global optimality) was reached and that
independent runs converged on similar stationary pa-
rameter estimates. Each of these data partition runs was
conducted with a total of 1.4 million generations, 400,000
of which were discarded as burn-in, yielding 1 million
post burn-in generations.

Each MCMC run for all individual gene and interme-
diate data partitions employed the model selected by
ModelTest for that partition, or the nearest model to that
model that could be implemented in MrBayes. The to-
tal combined data set was subjected to MCMC analyses
under multiple alternative evolutionary models which
differed in the way they parameterized among-site rate
variation.

The most complex (parameter rich) model that Mod-
elTest v3.0 can evaluate is a general time reversible
(GTR; Tavaré, 1986) model with an estimated propor-
tion of invariant sites (I) and gamma distributed among-
site rate variation (G; Yang, 1993). MrBayes v2.01 is
capable of employing more complex models than this
GTR+I+G model. MrBayes allows among-site rate vari-
ation to be partitioned among user defined sites (site-
specific gamma; SSG) as well as allowing the use of an
autocorrelated gamma (A; e.g., Yang, 1995; Penny et al.,
2001; Huelsenbeck, 2002) to account for autocorrelation
of among-site rates. These two modifications of among-
site rate variation may be used independently as well as
simultaneously in a given model in MrBayes. In addi-
tion to the GTR+I+G model, we conducted combined
data MCMC analyses with alternative models that par-
titioned gamma with (SAG) and without (SSG) account-
ing for autocorrelation (A) of rates. These two alternative
ways to estimate among-site rate variation were invoked
by the commands “rates = ssadgamma” and “rates = ss-
gamma” (respectively) in the MrBayes 2.01 command
block. All models applied a single common GTR sub-
stitution rate matrix across all data and differed only
in the way they modeled and partitioned among-site
rates according to the following a priori partitions: GTR
+ autocorrelated gamma (GTR+AG); protein-coding
genes versus rRNA genes (PR-SSG and PR-SAG); nuclear
versus mitochondrial genes (NM-SSG and NM-SAG);
c-mos versus ND4 versus rRNA genes (CNR-SSG and
CNR-SAG); all genes partitioned independently (4gene-
SSG and 4gene-SAG). Table 1 provides a summary of the
parametric content of each of these models.

Choosing among these models to identify the best
model of evolution on which to base phylogenetic and
taxonomic decisions was approached in several ways.
Our goal was to find the model of evolution which best
fit the data yet contained the fewest total parameters
(the best-fit model). Specifically, our major criteria for
identification of the simplest best-fit model included the
demonstration of clear improvements of likelihood es-
timates under that model, along with a practical effect
on topology and/or posterior probability support for
clades. Therefore, we were not interested in more com-
plex models that did not estimate a different topology
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TABLE 1. Parametric composition of models tested in Bayesian MCMC analyses of the combined data.

Nucleotide Model parameters in addition Gamma autocorrelation Site (= partition)-
Model name substitution matrix to GTR matrix Gamma parameter parameter specific gamma parameters

GTR+I+G GTR 2 + − −
GTR+AG GTR 2 + + −
NM-SSG GTR 3 + − 2
PR-SSG GTR 3 + − 2
NM-SAG GTR 4 + + 2
PR-SAG GTR 4 + + 2
CNR-SSG GTR 5 + − 3
CNR-SAG GTR 6 + + 3
4gene-SSG GTR 6 + − 4
4gene-SAG GTR 7 + + 4

or have significant effects on posterior probability esti-
mates. Once a tentative model was chosen, this model
was rigorously tested for overparameterization and un-
reliability (which would suggest it was not a candidate
for the best-fit model).

We examined the burn-in plots of likelihoods for
MCMC chains for each model to determine the rate of
ascent to an apparent stationary plateau, in addition
to the degree of overlap between models and superi-
ority (based on chain likelihood values) of models, rel-
ative to the number of parameters they employed. To
examine the relative improvement in likelihood scores
with respect to model complexity, we compared the
95% credibility interval (CI) of MCMC chain likeli-
hood scores between models. To calculate the 95% CI,
we ranked all post burn-in tree estimates by ln like-
lihood and included the most likely 95% (Felsenstein,
1968; Huelsenbeck et al., 2002). Once a tentative best-fit
was identified, we evaluated parameter burn-in plots of
these models for evidence of identifiability of param-
eters by checking for commonality in parameter esti-
mates among runs. We also examined the sensitivity of
posterior probability values to model complexity using
Wilcoxon signed rank tests implemented with Statistica
(StatSoft, 1993) to test for significant changes in poste-
rior probability estimates between the chosen model and
those which were proximal alternative best-fit models.
For interpretation of phylogenetic inferences, we con-
sider posterior probability values over 95% to be well
resolved.

In addition to the three independent MCMC runs (1.4
million generations each) conducted for each model, we
conducted a single MCMC run for an extended number
of generations (33 million generations) for the two main
alternative best-fit models (GTR+I+G and CNR-SSG) for
the combined data set. For each long MCMC run, the pos-
terior probabilities for clades were monitored in intervals
of two million generations to examine any trends and the
overall precision associated with posterior probability
estimates through generations of extended MCMC runs.
Additionally, posterior probabilities of clades estimated
from these long MCMC runs were compared to those
estimated from the initial three MCMC runs per model
(run for 1.4 million generations) to examine the effect that
MCMC analysis strategy (multiple short runs versus sin-
gle long run) has on estimates of posterior probabilities.

Posterior probabilities estimated from these long runs
were also used to re-test for significant changes in poste-
rior probability estimates derived from analyses under
alternative models (as described above).

RESULTS

A total of 1810 characters were included in the analy-
sis (c-mos 408 bp; ND4 623 bp; 12S 331 bp; 16S 448 bp).
Details of optimal trees selected by maximum parsimony
and best-fit models of evolution selected by ModelTest
(Posada and Crandall, 1998) are presented in Table 2.
After preliminary phylogenetic reconstructions, we
identified several apparent problems with the Pelle-
grino et al. (2001) data set, including switching of taxon
names and apparent contamination, which we rectified
prior to final analyses. These are discussed in detail in
Appendix 2.

Parsimony Phylogenetic Reconstruction

The total evidence (all four genes) equally weighted
parsimony reconstruction resulted in two most parsimo-
nious trees of 6600 steps with 769 parsimony-informative
characters and CI = 0.228, RI = 0.543, RC = 0.124, HI =
0.772 (Fig. 1). Six major clades were recovered, each
with high bootstrap support (70% to 100%) and differ-
ing from the reconstruction of Pellegrino et al. (2001).
Whereas the earliest split within the Gymnophthalmi-
dae in Pellegrino et al. (2001) was the divergence of a
clade composed of the three Alopoglossus species from
all others, we recovered a clade of Alopoglossus spp. and
Ptychoglossus brevifrontalis. As explained in Appendix
2, an apparent taxon name error in the 12S and 16S
data sets presumably resulted in the erroneous place-
ment of Ptychoglossus in the Cercosaurinae. In addition
to the Alopoglossus + Ptychoglossus clade, five other ma-
jor clades were present, each of which had bootstrap
support of 70% or greater. Relationships among these
clades did not receive high bootstrap support. The Het-
erodactylini was sister to the Gymnophthalmini, sup-
porting a monophyletic Gymnophthalminae with high
bootstrap support (99%). The other three clades included
a clade of Bachia + Rhachisaurus, the Ecpleopini, and the
Cercosaurini. Monophyly of the Cercosaurinae did not
receive strong bootstrap support.
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TABLE 2. Statistics for datasets used, including results from MP searches and suggested model from hierarchical ln likelihood ratio test
(hLRT) criterion from ModelTest.

c-mos ND4 12S 16Sa All rRNA All mt All protein Total

Number of characters 408 623 331 448 779 1402 1031 1810
Parsimony-informative 173 363 112 121 233 596 536 769
Number of trees 666 30 5195 >120,000 5065 6 4 2
Optimal tree score 566 4365 749 739 1547 5990 4976 6600
CI 0.528 0.177 0.290 0.296 0.282 0.202 0.215 0.228
HI 0.472 0.823 0.710 0.704 0.718 0.798 0.785 0.772
hLRT-selected model K80+G GTR+I+G TrN+I+G TrN+I+G HKY+I+G TVM+I+G TVM+I+G GTR+I+G
Proportion invariable sites — 0.321 0.421 0.551 0.535 0.461 0.331 0.432
Gamma parameter 0.595 0.506 0.543 0.511 0.657 0.564 0.519 0.553
Ti:Tv ratio 2.67 — — — 2.651 — — —
Rate matrix

r(A-C) — 0.301 1 1 — 0.438 0.411 0.553
r(A-G) — 6.907 12.086 3.023 — 3.531 4.370 4.101
r(A-T) — 0.648 1 1 — 0.476 0.543 0.530
r(C-G) — 0.429 1 1 — 0.179 0.630 0.384
r(C-T) — 4.648 5.352 7.150 — 3.531 4.370 3.608
r(G-T) — 1 1 1 — 1 1 1

aWe were unable to complete the 16S run due to the enormous computational time required to store and evaluate the high number of optimal trees. To make
searching this data set feasible, we ran a heuristic search with 8000 random addition sequence replicates saving no more than 50 trees at each step.

Mitochondrial Gene MCMC Analyses
Based on hierarchical log likelihood ratio tests (hLRTs)

of successively complex models of sequence evolution,
ModelTest indicated the best-fit model for the combined
mitochondrial dataset was the TVM+I+G (Table 2). This
model of evolution, characterized by a five-parameter
nucleotide substitution rate matrix, is not currently avail-
able in MrBayes. Instead, the next best-fitting param-
eter rich model, which employs a GTR six-parameter
nucleotide substitution rate matrix, was employed with
proportion of invariant sites (I) and gamma distributed
among-site rate variation (G). Parameter estimates de-
rived from the combination of all post burn-in estimates
from the three independent MCMC runs are summarized
in Table 3. All three runs reached apparent stationarity
(in estimates of substitution model parameters, as well
as chain likelihood scores) prior to 50,000 generations,
well before the conservative burn-in period of 400,000
generations.

The all mitochondrial data partition MCMC recon-
struction (Fig. 2a) contrasts with the Pellegrino et al.
(2001) reconstruction in the relative phylogenetic place-

TABLE 3. Parameter estimates for all mitochondrial gene and c-mos.

All mt genes—All runs c-mos—All runs

ln likelihood −26274.1 (−26295.6 to −26254.2) −3616.0 (−3634.3 to −3599.0)
pi(A) 0.397 (0.380–0.416) 0.259 (0.0.230–0.289)
pi(C) 0.283 (0.269–0.297) 0.265 (0.236–0.294)
pi(G) 0.077 (0.070–0.084) 0.243 (0.215–0.272)
pi(T) 0.243 (0.230–0.256) 0.233 (0.205–0.262)
r(A-C) 0.406 (0.310–0.524) —
r(A-G) 4.236 (3.497–5.091) —
r(A-T) 0.470 (0.351–0.604) —
r(C-G) 0.201 (0.124–0.300) —
r(C-T) 3.641 (2.910–4.459) —
r(G-T) 1 —
Tv:Ti ratio — 5.432 (4.490–6.534)
Gamma parameter 0.503 (0.462–0.547) 0.644 (0.517–0.803)
Proportion of invariable sites 0.419 (0.387–0.450) —

ment of major clades deep in the phylogeny, but poste-
rior probability support for some the relationships was
not high. As in the parsimony reconstruction described
above, Alopoglossus and Ptychoglossus form a clade sister
to the remaining gymnophthalmids. The next node splits
the Ecpleopini from the remainder of the taxa (but with
low posterior probability support). Of the three MCMC
runs, one differed slightly with regard to the structure
of the remainder of the tree. Examination of this differ-
ence among runs revealed that the difference between
the majority rule topologies from post burn-in MCMC
trees resulted from an approximately 1% difference be-
tween runs in the posterior probability density support-
ing one relationship over another (both of which received
posterior probabilities below 50%). Figure 2a depicts the
consensus of those three runs that collapses nodes in
conflict, creating a polytomy of Rhachisaurus, Bachia, the
Gymnophthalminae, and the Cercosaurini minus Bachia.
Even with the differences among the reconstructions,
the lack of monophyly of the Cercosaurinae differs from
Pellegrino et al. (2001; their Fig. 4) and our parsimony
reconstruction (Fig. 1).
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FIGURE 1. Strict consensus phylogram of two most parsimonious trees based on the equally weighted maximum parsimony search including
all four genes (c-mos, ND4, 12S, and 16S). Labels (a) and (b) indicate individuals of a species (see Appendix 1). For reference, labels on the right
side represent the taxonomy presented by Pellegrino et al. (2001). Taxa that are not labeled have relationships that do not agree with that former
taxonomy.

C-mos (Nuclear Gene) MCMC Analyses
Based on hLRTs of successively complex models of

sequence evolution, ModelTest indicated the best-fit
model for the combined mitochondrial dataset was the

K80+G model (Table 2). Parameter estimates derived
from the combination of all post burn-in estimates from
the three independent MCMC runs, using a K80 + G
model, are summarized in Table 3. All three runs reached
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FIGURE 2. Bayesian phylogenetic trees for the independent nuclear and mitochondrial data partitions. Labels (a) and (b) indicate individuals
of a species (see Appendix 1). (a) Majority rule phylogram and posterior probabilities resulting from Bayesian analysis of all three mitochondrial
genes combined (ND4, 12S, and 16S) based on a combined 3 million post burn-in generations under the GTR+I+G model of evolution. (b) Majority
rule phylogram and posterior probabilities resulting from Bayesian analysis of nuclear c-mos gene data based on a combined 3 million post
burn-in generations under the K80+G model of evolution.



456 SYSTEMATIC BIOLOGY VOL. 53

apparent stationarity (in estimates of substitution model
parameters, as well as chain likelihood scores) prior to
50,000 generations.

The nuclear c-mos reconstruction (Fig. 2b) differs from
that of Pellegrino et al. (2001), Harris (2003), in our par-
simony reconstruction (Fig. 1), and our mitochondrial
reconstruction (Fig. 2a). As with Harris (2003), in our
parsimony reconstruction, and our mitochondrial DNA
reconstruction, Alopoglossus and Ptychoglossus form a
basal clade. Similar to our parsimony reconstruction,
four additional major clades are formed, each with high
posterior probability support for clade monophyly, but
low support of the relationships among the clades. The
Gymnophthalminae forms a monophyletic group with
strong posterior probability support. The Cercosauri-
nae is not monophyletic because there is strong sup-
port for the Ecpleopini being only distantly related to
the Cercosaurini. Additionally, as in the parsimony re-
construction, Bachia and Rhachisaurus form a clade. As
in Pellegrino et al.’s (2001) maximum likelihood recon-
struction, but differing from our parsimony reconstruc-
tion, tribe Heterodactylini is not monophyletic but is pa-
raphyletic with respect to the Gymnophthalmini.

Combined MCMC Analyses

Based on the hLRT criterion for model selection, Mod-
elTest chose the GTR+I+G model of nucleotide substi-
tution for the combined data set (Table 2). Burn-in plots
of likelihood scores of MCMC chains conducted with
this model and alternative models are shown in Figure 3
and mean stationary values (with 95% CI) across mod-
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FIGURE 3. The ln likelihood scores of MCMC chains based on alternative models of evolution, sampled in 10,000 generation intervals for
clarity of presentation. See text for descriptions of alternative models.

Models

-30650

-30600

-30550

-30500

-30450

-30400

-30350

-30300

-30250

FIGURE 4. The mean and 95% credibility interval for post burn-in
ln likelihood scores of MCMC chains based on alternative models of
evolution. See text for descriptions of alternative models.

els are compared in Figure 4. A more detailed plot of
the ascent of likelihood scores of chains toward station-
arity for each model is shown in Figure 5. Although we
only show burn-in plots for chains from one of three
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FIGURE 5. The ln likelihood scores of MCMC chains based on alternative models of evolution, focusing on the period below 50,000 generations,
sampled every 100 generations. See text for descriptions of alternative models.

individual MCMC analyses for each model, no single
run (under a particular model) was noticeably different
with regard to burn-in time, parameter estimate mean,
or CI at stationarity.

Based on the post-burn-in plateau of chain likelihood
values observed in Figures 3 and 4, the GTR+I+G model
appears to out-perform models that partition among-site
rate variation between either nuclear versus mitochon-
drial genes (NM-SSG and NM-SAG) or between protein-
coding versus ribosomal RNA genes (PR-SSG and PR-
SAG). The GTR+AG model resulted in chain likelihood
scores that were markedly lower than those estimated
under the GTR+I+G model. Two groups of models that
partition among-site rate variation into either three or
four classes appeared to result in clear improvements
in the likelihood scores of stationary chains when com-
pared to the GTR+I+G model: models that partitioned
among-site rate variation among c-mos (nuclear protein-
coding) versus ND4 (mitochondrial protein-coding) ver-
sus ribosomal RNA genes (CNR-SSG and CNR-SAG;
three site partitions) and those that partitioned rate vari-
ation among all individual genes (4gene-SSG and 4gene-
SAG; four site partitions). Within this group of models
with either three or four partitions of among-site rate
variation (with and without autocorrelated gamma), no
single model clearly outperformed any other based on
estimates of stationary chain likelihood scores (Fig. 3).
From Figure 5 we observe that all models, including
those with three or four partitions for among-site rate

variation, achieve stationarity rapidly by approximately
30,000 generations (although we conservatively dis-
carded trees prior to 400,000 generations as burn-in).

Consensus topologies estimated from post-burn-in
generations were identical among multiple indepen-
dent runs under a particular model (Fig. 6). We found
a general correlation between topology and model fit
(inferred based on relative values of stationary chain
likelihood scores), whereby the two models with the
lowest range of ln likelihood scores (mean ln likeli-
hood less than −30,550) for chains produced slightly
different topologies compared with all models result-
ing in chains with higher ln likelihoods (mean ln
likelihood less than −30,550). Analyses of the com-
bined data employing all models except NM-SSG and
GTR+AG recovered the identical topology. The anal-
yses under the NM-SSG and GTR+AG models recov-
ered a topology identical to the others except for a
swap in the relative branching order with respect to
two clades (Rhachisaurus + Gymnophthalminae and Ec-
pleopini; neither rearrangement received high posterior
probability support), in addition to a modification affect-
ing the phylogenetic position of Proctoporus ventrimacu-
latus + P . cf. ventrimaculatus.

Based on our a priori criteria for initial identification
of the preferred evolutionary model as that which con-
tained the fewest number of parameters while demon-
strating a clear optimization of overall chain likelihood,
we chose the CNR-SSG model. To examine the effect of
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FIGURE 6. Bayesian phylogenetic tree and posterior probabilities for clades based on the combined, four-gene data set analyzed under the
CNR-SSG model. Tree is based on the combination of all post burn-in generations resulting from three independent runs of the model, for a
combined total of 3 million post-burn-in generations. Labels (a) and (b) indicate individuals of a species (see Appendix 1). This work’s new
proposed phylogenetic classification depicted by labeled bars on the right.

model choice on the cumulative posterior probabilities
for clades, we tested for significant changes in poste-
rior probabilities between the CNR-SSG model and all
other models that were found to be as good or better

than the GTR+I+G model (including GTR+I+G, CNR-
SAG, 4gene-SSG, and 4gene-SAG) with Wilcoxon signed
rank tests. For these, posterior probabilities for matched
nodes were pairs for comparison. Tests comparing
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FIGURE 7. Plot of the posterior probabilities derived from the GTR+I+G MCMC analyses (all three runs combined) versus the posterior
probabilities derived from the CNR-SSG model (all three runs combined). For comparison, a 1:1 line is plotted on the same axis.

the overall change in posterior probabilities between
the CNR-SSG model and other models with three or
four gamma partitions (with and without autocorrelated
gamma) were not significant. However, the GTR+I+G
model was found to produce, overall, significantly lower
estimates for posterior probabilities of clades than the
preferred model (CNR-SSG; z = 2.173, P = 0.029). This
trend is demonstrated by the relationship between pos-
terior probabilities from the GTR+I+G model and the
CNR-SSG model, plotted against one another in Figure 7.
Overall, a majority of nodes plotted in this figure fall
above the 1:1 line, indicating higher nodal support re-
sulting from the CNR-SSG model. It is also important to
note, however, that several nodes did decrease in poste-
rior probability support under the CNR-SSG model.

As described above, burn-in plots of ln likelihood
of MCMC chain scores from all independent MCMC
runs under the CNR-SSG model are essentially iden-
tical with a rapid and direct approach to a common
stationary plateau (not shown). To investigate burn-in
and common estimates at stationarity for the parame-
ters of the independent (1.4 million generation) CNR-
SSG model runs, burn-in plots of the reversible rate of
A-G and A-T substitutions as well as the gamma pa-
rameter and site-specific partition rate parameters are
shown in Figure 8. Similar to burn-in plots of likelihood
tree scores (Fig. 5), all parameters appear to approach
stationarity rapidly (in less than 50,000 generations) and
oscillate around a common stationary value (across inde-
pendent runs). Because all three (1.4 million generation)
independent runs of our preferred model (CNR-SSG) ap-
pear to reach common stationary estimates of param-
eters, produce identical topologies, and nearly identi-
cal posterior probability estimates, hereafter we report
only results based on the combination of all 3 million
post burn-in generations pooled from the three indepen-
dent runs of MCMC analyses using the CNR-SSG model.

Parameter values, with 95% credibility intervals, result-
ing from MCMC CNR-SSG model analyses are given in
Table 4.

Posterior probability estimates derived from post
burn-in generations from the single long MCMC run
(33 million generations) of the GTR+I+G and CNR-SSG
models were very similar to estimates based on the com-
bination of the three shorter (1.4 million generation) runs.
Considering only clades supported with less than 100%
posterior probability support, the long MCMC run of
the GTR+I+G model produced estimates that were, on
average, 1.05% different from the short run estimates,
compared with 0.40% for the CNR-SSG model. Given the
almost identical posterior probability estimates (within
1%) derived from the single long MCMC run under the
CNR-SSG model as compared with those previously es-
timated from the combination of the three short MCMC
runs of this model, we retain the use of posterior proba-
bilities derived from the three short runs for further dis-
cussions of the phylogeny. Estimates of model param-
eters derived from this long CNR-SSG MCMC run are
given in Table 4.

Relative to the overall estimates of posterior probabil-
ities (all 33 million generations minus 1 million burn-
in), the deviation of posterior probability estimates at
intervals of generations showed greater variance for
the GTR+I+G model than did the CNR-SSG estimates
(Fig. 9). The GTR+I+G model produced less precise
point (intermediate interval) estimates than did the
CNR-SSG model. In other words, as MCMC chains pro-
gressed through generations, the posterior probability
estimates tended to vary more for the GTR+I+G than
the CNR-SSG model. Although the GTR+I+G model
included 20 nodes supported below 100%, whereas the
CNR-SSG model included only 17, this bias was factored
out by reporting deviations per interval after dividing
by the number of nodes considered. This average nodal
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FIGURE 8. Plots of selected parameters of the CNR-SSG model through generations. All three independent runs are plotted per graph to
show common burn-in rates and similar parameter estimates. (a) Plot of parametric estimates of r(A-G) from the GTR rate matrix. (b) Plot of the
parametric estimates of r(A-T) from the GTR rate matrix. (c) Plot of the gamma parameter estimates. (d) Plot of the site-specific rate multiplier
for the ND4, rRNA (12S+16S), and c-mos site specific partitions of the gamma parameter.

support deviation (from overall long run estimates) cal-
culated from intervals of generations for the GTR+I+G
model was more than twice that for the CNR-SSG model
(Fig. 9). In comparisons of variance for nodes receiv-
ing similar levels of support (e.g., around 80% poste-
rior probability), greater degrees of variation were ev-
ident in the GTR+I+G than the CNR-SSG model run
(see Appendix 3 for detail, available at the Society of
Systematic Biologists website, http://systematicbiology.
org), suggesting that elevated deviation observed in
GTR+I+G estimates were not particularly biased by
overall higher posterior probability estimates from the
CNR-SSG model. Despite variance in posterior proba-
bility estimates for intervals of generations, however,
no latent trends were observed in posterior proba-
bilities that may indicate that new tree islands were
sampled only late in runs (after many generations) or
that chains were not completely burned-in after the in-
ferred burn-in period (based on likelihood plateau). In-
stead, fluctuations in nodal support through generations
appear to represent oscillating patterns (see Appendix 3
for detail).

We reexamine the effect of model choice on the cumu-
lative posterior probabilities for clades based on these

two extended MCMC runs (for the GTR+I+G and CNR-
SSG models). Results from a Wilcoxon signed rank test
returned very similar results as previous estimates based
on the three short MCMC runs, suggesting the GTR+I+G
model produced overall significantly lower estimates for
posterior probabilities of clades than the preferred model
(CNR-SSG; z = 2.334, P = 0.019).

The topology of the MCMC CNR-SSG tree (Fig. 6)
has similarities with each of the other reconstructions
but also differs from all aforementioned reconstructions
in several ways. As with all of our phylogenetic recon-
structions, Alopoglossus and Ptychoglossus form a well-
supported clade sister to the rest of the Gymnophthalmi-
dae. The Cercosaurinae is polyphyletic. As in the c-mos
reconstruction, the Heterodactylini is paraphyletic with
respect to the Gymnophthalmini. Although the place-
ment of Rhachisaurus as the sister taxon to the Gymnoph-
thalminae is unique among the parsimony and data
partitions (mitochondrial and nuclear) in this study, it
is in the same position as that was recovered by Pel-
legrino et al. (2001; their Fig. 4). Additionally, Bachia
is recovered (with weak support) as the sister taxon
to the Cercosaurini, as was found by Pellegrino et al.
(2001).
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FIGURE 9. Comparison of deviation of posterior probability estimates at intervals of generations compared to overall means from long
MCMC runs (33 million generations) for the GTR+I+G and CNR-SSG models. Values represent the absolute deviation of posterior probability
estimates (relative to overall mean for long MCMC run) averaged across all nodes receiving less than 100% posterior probability.

Comparison Among Phylogenetic Reconstructions

Not all individual gene data sets (Fig. 2, and not
shown) were in agreement with the combined tree
(Fig. 6). The c-mos data partition agreed with the com-
bined tree on higher-level relationships except for the
placement of Rhachisaurus and Bachia. Similar to the
parsimony reconstruction (Fig. 1), Rhachisaurus and
Bachia formed a clade instead of Rhachisaurus being re-
lated to the Gymnophthalminae and Bachia to the Cer-
cosaurini. The ND4 data partition supported a mono-
phyletic Heterodactylini. The 16S data partition resolved
the same general relationship as the combined data CNR-
SSG tree except that one of the outgroups, Tupinambis
quadrilineatus, was nested within the ingroup. The 12S
data partition produced topologies most divergent from
other genes, but nearly all of those relationships received
poor posterior probability support.

DISCUSSION

Model Selection and Evaluation

Bayesian methods have greatly improved our abil-
ity to estimate phylogenies using larger datasets and
complex models of evolution. However, this creates a
seemingly paradoxical dilemma with regard to model
complexity and overparameterization. In general, it is as-
sumed that more realistic models of evolution will yield
more accurate trees and clade credibility (posterior prob-
ability) values, thus perhaps favoring parameter-rich
models, because interpretations of posterior probabili-
ties are contingent on model specifications (Huelsenbeck
et al., 2002). However, a key assumption of Wald’s
(1949) proof of the consistency of maximum likelihood

estimates is that all of the parameters of the likelihood
function are identifiable from the true probability dis-
tribution of the data (Rogers, 2001). Even if a particular
parameter may be intrinsic in the evolution of DNA se-
quences, we need to consider whether this parameter can
be accurately estimated based on the data. This dilemma
is manifested when attempting to construct and imple-
ment models that realistically describe DNA evolution,
while avoiding overparameterization, or using more pa-
rameters than can be meaningfully estimated from the
data.

In a Bayesian analysis, the problem of identifying the
best model may be condensed to two intertwined is-
sues: evaluating model performance and fit and examin-
ing the sensitivity of posterior probability distributions
to model specifications (Gelman et al., 1995; Huelsen-
beck et al., 2002). Detecting overparameterized models,
however, is not readily accomplished, especially in a
Bayesian phylogenetic framework (Huelsenbeck et al.,
2002; Rannala, 2002). Several authors have suggested fea-
tures of MCMC analyses that may be monitored to iden-
tify overparameterization, including poor convergence
of MCMC chains (Carlin and Louis, 1996), a strong cor-
relation among parameters in the posterior density de-
spite independence under the prior density (Rannala,
2002), delayed convergence of a MCMC chain to a sta-
tionary plateau relative to less parameterized models
(Rannala, 2002), and failure of multiple independent
runs (chains) of the same model to converge on sim-
ilar estimates of parameters and posterior probabili-
ties (Huelsenbeck et al., 2002). We used these criteria,
with the exception of testing among-parameter corre-
lation, to guide the evaluation of what we tentatively
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identified as the best-fit model (CNR-SSG). Testing
for among-parameter correlation, in our case, was not
possible because the nature of the model causes in-
herent correlation of the parameters of interest (those
which partition the among-site rate variation across
partitions).

Different evolutionary rates and among-site rate pat-
terns may be intrinsic evolutionary characteristics of dif-
ferent genes owing to their genomic origin (organellar
versus nuclear) or function (e.g., protein-coding versus
non-protein-coding). Sufficient evidence exists to sug-
gest that drastically different evolutionary rates and dis-
tinct, gene-specific among-site rates can be observed
among different genes categorized within a particular
class (e.g., among protein-coding mitochondrial genes;
Miyata, 1982; Kelly and Rice, 1996). We used these obser-
vations to identify plausible alternative partitions across
which to estimate specific rates of among-site rate vari-
ation. Comparison of post burn-in MCMC chain like-
lihood scores across alternative models for among-site
rate variation showed that only the three partition (CNR-
SSG and CNR-SAG) and four partition (4gene-SSG and
4gene-SAG) models fit the data better than the GTR+I+G
model chosen by ModelTest. We found no evidence for
substantial differences in burn-in time, chain likelihood
score at stationarity, or overall clade posterior probability
estimates across these models, yet we did detect a signif-
icant overall improvement in clade posterior probability
estimates between one of these four models (CNR-SSG)
and the GTR+I+G model. We found no evidence that this
best-fit model (CNR-SSG) was parametrically over-fitted
(excessively parameter rich). In fact, based on the analy-
sis of the extended MCMC runs, we found this model to
produce significantly more consistent posterior probabil-
ities through generations than did the GTR+I+G model.
Given available evidence, we concluded that the best-fit
model of evolution, in keeping with our goal of practical
improvement for the sake of phylogenetic inference, was
the CNR-SSG model, upon which we base our preferred
hypothesis for the phylogeny of Gymnophthalmidae.

Here, we summarize our approach to model con-
struction and evaluation as an explicit hierarchical
process:

1. Use hLRTs (e.g., ModelTest) to first identify best-
fit conventional parameters (although other model
choice criteria such as AIC [Akaike, 1974; also avail-
able in ModelTest], BIC [Schwarz, 1974], or DT [Minin
et al., 2003] may be substituted)

2. Construct alternative models with data set partitions
defined based on a priori expectations of potentially
biologically relevant subsets of the data (e.g., protein-
coding versus non-protein-coding genes or mitochon-
drial versus nuclear genes)

3. Examine model fit based on 95% CI of post burn-in
MCMC chain likelihood values

4. Tentatively choose best-fit model
5. Examine this model for evidence of parameter identi-

fiability or over-fitting

i. Compare relative burn-in period across alternative
models

ii. Check for topological consistency across multiple
runs of tentative model

iii. Examine consistency of parameter estimates
across multiple independent runs of the tentatively
optimal model

iv. Check for consistency of clade posterior probabil-
ities across independent runs

v. Check for consistency of posterior probability es-
timates across generations for extended MCMC
runs (with large number of generations)

6. Test for significant differences in posterior probabili-
ties between tentative model and those models of sim-
ilar fit to the data

7. Given evidence for parameter identifiability and sig-
nificant changes to posterior probabilities, accept
model. If identifiability is questionable or no signif-
icant changes to posterior probability are observed,
reduce model parameterization and repeat model
evaluation.

Effects of Partitioning Gamma and Using
Autocorrelated Rate Variation

Several studies based on simulated data have strongly
supported the view that maximum likelihood estimates
of phylogeny remain accurate and robust even when
the model used to estimate phylogeny differs markedly
from that used to generate simulated data (Fukami-
Kobayashi and Tateno, 1991; Yang et al., 1994; Sullivan
and Swofford, 2001). Our results support this conclu-
sion using empirical data, in that several different mod-
els for among-site rate variation support the same or
very similar topologies. Many authors have underscored
the importance of including estimates of among-site rate
variation (e.g., Yang, 1993; Sullivan and Swofford, 2001;
Buckley and Cunningham, 2002; Nylander et al., 2004;
see review in Yang, 1996b) in models of sequence evo-
lution for increasing the consistency and accuracy of
phylogenetic inference. Our results demonstrate that ap-
parent inappropriate partitioning of gamma among loci
(e.g., NM-SAG model) may lead to inconsistent and pre-
sumably inaccurate phylogenetic inferences. The fact
that our preferred model (CNR-SSG) provided a sig-
nificant increase in overall posterior probability esti-
mates for clades over the GTR+I+G model suggests
that well fitted partitioning of among-site rate variation
appears to significantly affect the posterior probability
distributions of MCMC analyses. These results paral-
lel previous studies that have demonstrated the signif-
icant effects of substitution model on maximum likeli-
hood bootstrap support (Yang et al., 1995; Sullivan et al.,
1997; Buckley et al, 2001; Buckley and Cunningham,
2002).

An interesting, yet difficult to interpret, result was
observed in comparisons of posterior probability mon-
itored through intervals during extended MCMC runs.
We found the CNR-SSG model to produce more consis-
tent posterior probabilities through generations than did
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the GTR+I+G model. If we assume that the complexity
of tree space remained relatively constant under the two
models, this may suggest that the MCMC chains of the
CNR-SSG model were more consistent over intervals of
generations with respect to the regular visitation of tree
islands. Alternatively, it seems possible that implement-
ing the partitioned gamma model (CNR-SSG) may have
reduced the complexity of tree space by decreasing the
number of optimal or near optimal peaks (reducing the
number of major islands visited by MCMC chains over
time), thereby reducing the variance through generations
in trees sampled in the posterior distribution. This may
have been accomplished by reducing the likelihood of
certain peaks within tree space due to the different pa-
rameterization of among-site rates, thereby decreasing
the number of near optimal tree islands. In general, the
properties associated with the behavior of MCMC chains
in tree space through generations has been essentially
untouched in the literature, yet represents a significant
gap in our understanding of Bayesian MCMC analyses.
Future research is clearly necessary to answer questions
about the number of generations and independent runs
required for robust conclusions from MCMC and also
how this may relate to model complexity and changes to
the general topology of tree space.

Although the results of this study favor use of models
that partition among-site rate variation, they also high-
light a potential pitfall of such parameter-rich models.
Not all alternative models improved model fit relative to
GTR+I+G. The GTR+AG, PR-SSG, PR-SAG, NM-SSG,
and NM-SAG models all decreased the fit of the model
to the data, relative to the GTR+I+G model (chosen ini-
tially by hLRT criteria). These results re-emphasize the
need to test the fit of alternative models instead of choos-
ing a particular model a priori (e.g., Huelsenbeck and
Crandall, 1997; Posada and Crandall, 2001; Minin et al.,
2003). The GTR+I+G model not only fit the data better
than some partitioned models (e.g., NM-SSG, PR-SAG;
Fig. 4), but also recovered the identical topology while
(on average) underestimating posterior probability sup-
port for clades (Fig. 7). These findings support the utility
of this conventionally employed model and suggest that
previous analyses using this model are likely to be as
robust (with regard to topology) as more complex mod-
els, but provide more conservative estimates of posterior
probability support for clades. However, our analysis of
extended MCMC runs suggests that, for a reason that is
not immediately clear, the GTR+I+G model appeared
to take a large number of generations to undergo oscilla-
tion cycles with respect to estimates of posterior proba-
bilities. This suggests that, for some models, at least one
extended MCMC run (with a large number of genera-
tions) is desirable to precisely and accurately estimate
posterior probabilities so that trees are sampled in the
posterior distribution according to their posterior proba-
bility (Swofford, Warren, and Wilgenbusch, unpublished
data). It is encouraging, from the standpoint of compu-
tational feasibility, that the estimates of model parame-
ters, chain likelihood scores, and, particularly, posterior
probabilities derived from the combination of three short

(1.4 million generation) independent MCMC runs pro-
vided what appears to be, at least, a sufficient approxima-
tion of posterior probabilities derived from much longer
MCMC runs.

Several authors have demonstrated the utility of
employing a parameter to account for autocorrelated
among-site rate variation in phylogenetic analyses (e.g.,
Yang, 1995; Penny et al., 2001; Huelsenbeck, 2002). Al-
though evidence for the occurrence of autocorrelated
rates has been well documented (Yang, 1995; Nielsen,
1997; Penny et al., 2001), we found the addition of this
parameter to alternative models to be of limited value
for improving the fit of models to our data. As can be
seen in Figure 4, models which fit the data poorly (PR-
SSG and NM-SSG) did appear to be notably improved
with the addition of a parameter for autocorrelation of
among-site rates, although this increase in fit did not ex-
ceed that of the GTR+I+G model (or the CNR or 4gene
models). Among models which showed the best-fit to the
data (CNR and 4gene), the addition of a parameter to ac-
count for among-site rate autocorrelation only slightly
increased the likelihood scores for MCMC chains such
that there was still broad overlap in the 95% CI of like-
lihood scores (Fig. 4). Similarly, Wilcoxon signed rank
tests comparing overall posterior probabilities for clades
between SSG and SAG variants of the CNR and 4gene
models found no significant differences attributable to
the addition of the auto-correlation parameter.

In this study we have concentrated on accounting for
one particular type of heterogeneity in among-site rate
patterns in combined DNA sequence analysis, that which
exists at or above the level of a gene or locus, ignor-
ing potential partitions that may be prescribed within
genes. Models that do examine and attempt to account
for within gene heterogeneity by constructing partitions
based on codon position (e.g., Yang, 1996a; Krajewski
et al., 1999; Buckley et al., 2001), protein domain (Herron
et al., in press), or secondary structure for rRNA or tRNA
genes (e.g., Schoniger and von Haeseler, 1994; Savill et al.,
2001) have also been implemented. These intralocus par-
titions have yet to be thoroughly evaluated in a Bayesian
framework and may potentially add additional realistic
parameters to models of sequence evolution, especially
in cases where very distant relationships are inferred
(Penny et al., 2001) or where extreme accuracy of branch
length estimates or model parameters are particularly
critical to conclusions (Yang et al., 1994). Understand-
ing and testing of parametric identifiability in complex
models have been poorly studied and clearly requires
additional attention. This issue, in addition to topology
and posterior probability sensitivity to model choice,
would benefit from future investigations using both sim-
ulated data and known phylogenies where more defini-
tive conclusions about the effects of model choice may be
drawn.

Taxonomic Considerations and Alterations

Much of our phylogeny reconstruction is consistent
with that recovered by Pellegrino et al. (2001). However,
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our preferred phylogenetic hypothesis (combined data
MCMC CNR-SSG reconstruction; Fig. 6) suggests four
higher level taxonomic changes to the current classifi-
cation (Pellegrino et al., 2001). The first change is that
Ptychoglossus appears to be most closely related to Alo-
poglossus and not to the Cercosaurini. The placement
of Ptychoglossus in the Cercosaurini by Pellegrino et al.
(2001) was presumably the result of the swapping of
taxon names between Ptychoglossus and Neusticurus juru-
azensis, as discussed in Appendix 2.This relationship was
also inferred from the nuclear partition trees of Pellegrino
et al. (2001) (and the c-mos reconstruction of Harris, 2003)
in which Ptychoglossus was sister to the three Alopoglos-
sus species. After making the correction to the Pellegrino
et al. (2001) data set, and adding our own sequences for
this taxon, it seems clear that Ptychoglossus brevifrontalis is
sister to Alopoglossus; therefore, we remove Ptychoglossus
from the Cercosaurinae and place it in the Alopoglossi-
nae. This relationship is also supported by the morpho-
logical synapomorphy (present in both Ptychoglossus and
Alopoglossus) of infralingual plicae, unique in the family
Gymnophthalmidae.

The second taxonomic alteration involves the tribe
Heterodactylini. This tribe is paraphyletic with respect
to the Gymnophthalmini in our combined tree (Fig. 6)
and in the c-mos (Fig. 2) and 16S (not shown) reconstruc-
tions. The paraphyly of the tribe was also apparent in
Pellegrino et al.’s (2001) maximum likelihood tree. Be-
cause there does not appear to be sufficient support for
recognizing a separate tribe Heterodactylini, we remove
both of the Gymnophthalmini and Heterodactylini tribal
names and refer all of the pertaining genera to subfamily
Gymnophthalminae with no tribes.

The third taxonomic alteration involves species be-
longing to the cercosaurine tribe Ecpleopini. The CNR-
SSG tree (Fig. 6) suggests that the ecpleopiines and the
cercosauriines do not comprise a monophyletic Cer-
cosaurinae. Although posterior probability support for
intervening clades is low, monophyly of both groups is
well supported. The Ecpleopini appears to be distantly
related to the Cercosaurini and we hereby raise the status
of the former members of tribe Ecpleopini (Amapasaurus,
Anotosaura, Arthrosaura, Colobosauroides, Ecpleopus, and
Leposoma; Pellegrino et al., 2001) to subfamily status, the
Ecpleopinae Fitzinger.

The fourth taxonomic alteration involves the place-
ment of Bachia. Pellegrino et al. (2001) recovered its place-
ment as basal within the Cercosaurini. The node join-
ing Bachia to the rest of the Cercosaurini was supported
by bootstrap values less than 50% on their parsimony
tree and by 81% on their maximum likelihood tree. We
found conflict between our parsimony reconstructions
and Bayesian reconstructions. In the parsimony trees
(and 16S and c-mos individual Bayesian gene trees; 16S
not shown) we found Bachia to be closely related to
Rhachisaurus brachylepis, either joined with the Ecpleopini
or distantly related to the Cercosaurinae. In our CNR-
SSG reconstruction Bachia appears to be the sister lin-
eage to the rest of the Cercosaurini with low posterior
probabilities supporting Bachia in that position. In addi-

tion, a large genetic distance separated Bachia from the
other cercosauriines. Based on these data we are still un-
sure of the phylogenetic placement of Bachia within the
family. However, we are confident that Bachia appears
to be distantly related to all other sampled taxa. We be-
lieve the best course of action at the present time is to
leave Bachia in the Cercosaurinae but elevate the genus
to tribe status, the Bachini. In this way the relationships of
this genus with other genera of the Cercosaurinae are not
confused.

A new phylogenetic classification for the family is pre-
sented in Table 5. Based on the additions we made to the
Pellegrino et al. (2001) data set, several other taxonomic
issues warrant mention. The addition of Pholidobolus

TABLE 5. Current phylogenetic classification of family Gymno-
phthalmidae.

Taxon

Gymnophthalmidae Merrem, 1820
Alopoglossinae Pellegrino, Rodrigues, Yonenaga-Yassuda,

and Sites, 2001
Alopoglossus Boulenger, 1885
Ptychoglossus Boulenger, 1890

Cercosaurinae Gray, 1838
Tribe Bachini New Tribe

Bachia Gray, 1845
Tribe Cercosaurini Gray, 1838

Anadia Gray, 1845
Cercosaura Wagler, 1830
Echinosaura Boulenger, 1890
Euspondylus Tschudi, 1845
Macropholidus Noble, 1921
Neusticurus Duméril and Bibron, 1839
Opipeuter Uzzell, 1969
Pholidobolus Peters, 1862
Placosoma Tschudi, 1847
Proctoporus Tschudi, 1845
Riolama Uzzell, 1973
Teuchocercus Fritts and Smith, 1969

Ecpleopinae Fitzinger, 1843
Amapasaurus Cunha, 1970
Anotosaura Amaral, 1933
Arthrosaura Boulenger, 1885
Colobosauroides Cunha and Lima Verde, 1991
Ecpleopus Duméril and Bibron, 1839
Leposoma Spix, 1825

Gymnophthalminae Merrem, 1820
Calyptommatus Rodrigues, 1991
Colobodactylus Amaral, 1933
Colobosaura Boulenger, 1887
Heterodactylus Spix, 1825
Iphisa Gray, 1851
Gymnophthalmus Merrem, 1820
Micrablepharus Dunn, 1932
Nothobachia Rodrigues, 1984
Procellosaurinus Rodrigues, 1991
Psilophthalmus Rodrigues, 1991
Stenolepis Boulenger, 1888
Tretioscincus Cope, 1862
Vanzosaura Rodrigues, 1991

Rhachisaurinae Pellegrino, Rodrigues, Yonenaga-Yassuda,
and Sites, 2001

Rhachisaurus Pellegrino, Rodrigues, Yonenaga-Yassuda,
and Sites, 2001

Note. We are unable to place Adercosaurus Myers and Donnelly, 2001, defini-
tively in a subfamily because we were unable to examine specimens of that genus.
Based on the information provided by Myers and Donnelly (2001), this genus may
belong in the Alopoglossinae, the Ecpleopinae, or the Cercosaurini.
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macbrydei provides preliminary support for a mono-
phyletic Pholidobolus. The newly redesignated genus
Cercosaura, which now includes all taxa formerly placed
in Pantodactylus and Prionodactylus (Doan, 2003a), is sup-
ported in this study. The addition of Neusticurus stran-
gulatus shows that this species forms a clade with two
other members of its genus, N. ecpleopus and N. juruazen-
sis, but overall the genus is polyphyletic. Additionally,
Anotosaura is paraphyletic with respect to Colobosa-
uroides and Colobosaura is paraphyletic with respect to
Iphisa.

Proctoporus is the genus that was not included by
Pellegrino et al. (2001). Contrary to the conclusions made
by Doan (2003b) using morphological data, Proctoporus
appears to be a polyphyletic member of the Cercosaurini.
In the CNR-SSG reconstruction two separate Proctoporus
clades are apparent, separated from each other by Pholi-
dobolus, Cercosaura, and one clade of Neusticurus. One
Proctoporus clade is composed of members from Ecuador,
whereas the other includes members from Peru and Bo-
livia. In the parsimony reconstruction Proctoporus ventri-
maculatus additionally forms a third lineage that appears
to be most closely related to Cercosaura. This species (in-
cluding an unidentified specimen designated as P.cf.
ventrimaculatus) is the sole species from northern Peru,
separated by a vast distance from the Ecuadorian clade to
its north and the southern Peruvian and Bolivian clade to
its south. It is clear that taxonomic rearrangement is nec-
essary to rectify the taxonomy of this genus. This work
is underway by Doan and Castoe (in preparation).
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APPENDIX 1
List of operational taxonomic units (OTUs) used in this study with GenBank accession numbers. Cells with an X indicate that gene sequence
was not used in this study. (a) and (b) refer to individuals indicated in the figures. Museum accession numbers for specimens sequenced in this
study are given. Acronyms for museums are KU (University of Kansas), MHNSM (Museo de Historia Natural, Universidad Nacional Mayor
de San Marcos, Lima, Peru), QCAZ (Museo de Zoologı́a, Pontifica Universidad Católica del Ecuador, Quito, Ecuador), and UTA (University of
Texas at Arlington).

OTU Museum number ND4 c-mos 12S 16S

Alopoglossus atriventris AF420908 AF420821 AF420695 AF420746
Alopoglossus carinicaudatus AF420909 AF420847 AF420693 AF420744
Alopoglossus copii AF420865 AF420819 AF420692 AF420745
Anotosaura spn AF420902 X AF420682 AF420719
Anotosaura vanzolinia AF420910 X AF420670 AF420724
Arthrosaura kockii AF420866 X AF420680 AF420721
Arthrosaura reticulata AF420894 X AF420676 AF420722
Bachia bresslaui AF420876 AF420860 X AF420755
Bachia dorbignyi AF420892 X AF420688 AF420754
Bachia flavescens AF420869 AF420859 AF420705 AF420753
Calyptommatus leiolepis AF420874 AF420858 AF420683 AF420712
Calyptommatus nicterus AF420903 AF420822 AF420684 AF420747
Calyptommatus sinebrachiatus AF420873 AF420832 AF420685 AF420720
Cercosaura argulus (a) AF420896 AF420838 AF420698 AF420751
Cercosaura argulus (b) AF420893 AF420852 AF420696 AF420750
Cercosaura eigenmanni AF420895 AF420828 AF420690 AF420728
Cercosaura ocellata AF420883 AF420834 AF420677 AF420731
Cercosaura quadrilineata AF420880 AF420830 AF420672 AF420717
Cercosaura schreibersii albostrigata AF420882 AF420856 AF420658 AF420729
Cercosaura schreibersii schreibersii AF420911 AF420817 AF420686 AF420749
Colobodactylus dalcyanus AF420881 AF420844 AF420663 AF420736
Colobodactylus taunayi X AF420831 AF420662 AF420741
Colobosaura mentalis AF420899 AF420842 AF420694 AF420726
Colobosaura modesta AF420887 AF420845 AF420666 AF420733
Colobosaura spn AF420868 AF420840 AF420667 AF420739
Colobosauroides cearensis AF420886 AF420849 AF420659 AF420727
Ecpleopus gaudichaudii AF420901 AF420855 AF420660 AF420738
Gymnophthalmus leucomystax AF420906 AF420824 AF420675 AF420715
Gymnophthalmus vanzoi AF420867 AF420827 AF420687 AF420743
Heterodactylus imbricatus AF420885 AF420835 AF420661 AF420725
Iphisa elegans AF420889 AF420843 AF420668 AF420714
Leposoma oswaldoi AF420897 AF420854 AF420678 AF420723
Leposoma percarinatum AF420898 X AF420700 AF420735
Micrablepharus atticolus AF420904 AF420826 AF420664 AF420718
Micrablepharus maximiliani AF420875 AF420850 AF420657 AF420730
Neusticurus bicarinatus X AF420816 AF420671 AF420708
Neusticurus ecpleopus AF420890 AF420829 AF420656 AF420748
Neusticurus juruazensis AF420878 AF420857 AF420704 AF420758
Neusticurus rudis AF420905 X AF420689 AF420709
Neusticurus strangulatus KU 21677 AY507885 X AY507847 AY507866
Nothobachia ablephara AF420900 AF420851 AF420669 AF420740
Pholidobolus macbrydei KU 218406 AY507886 AY507896 AY507848 AY507867
Pholidobolus montium AF420884 AF420820 AF420701 AF420756
Placosoma cordylinum AF420879 AF420823 AF420673 AF420734
Placosoma glabellum AF420907 AF420833 AF420674 AF420742
Procellosaurinus erythrocercus AF420870 AF420836 AF420679 AF420711
Procellosaurinus tetradactylus AF420871 AF420818 AF420703 AF420713
Proctoporus bolivianus (a) UTA R-51506 AY225175 AY507898 AY507851 AY507869
Proctoporus bolivianus (b) UTA R-51487 AY225180 AY507897 AY507850 AY507868
Proctoporus cashcaensis KU 217205 AY507887 X AY507852 AY507870
Proctoporus colomaromani KU 217209 AY507888 AY507899 AY507853 AY507871
Proctoporus guentheri (a) UTA R-51515 AY225185 AY507900 AY507849 AY507872
Proctoporus guentheri (b) UTA R-51517 AY225169 AY507901 AY507854 AY507873
Proctoporus orcesi KU 221772 AY507889 X AY507855 AY507874
Proctoporus simoterus KU 217207 AY507890 AY507902 AY507856 AY507875
Proctoporus sucullucu (a) UTA R-51478 AY225171 AY507903 AY507857 AY507878
Proctoporus sucullucu (b) UTA R-51496 AY225177 AY507904 AY507858 AY507879
Proctoporus unicolor KU 217211 AY507893 AY507907 AY507862 AY507880
Proctoporus unsaacae (a) UTA R-51477 AY225170 AY507909 AY507860 AY507881
Proctoporus unsaacae (b) UTA R-51488 AY225186 AY507908 AY507859 AY507882
Proctoporus ventrimaculatus KU 219838 AY507894 AY507910 AY507863 AY507883
Proctoporus cf. ventrimaculatus KU 212687 AY507891 AY507903 AY507864 AY507876
Proctoporus sp. K19 QCAZ 879 AY507892 AY507904 AY507861 AY507877

(Continued on next page)
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APPENDIX 1 (CONTINUED)

OTU Museum number ND4 c-mos 12S 16S

Psilophthalmus paeminosus AF420872 AF420825 AF420702 AF420710
Ptychoglossus brevifrontalis X AF420848 AF420697 AF420757
Ptychoglossus brevifrontalis MHNSM AY507895 AY507911 AY507865 AY507884
Rhachisaurus brachylepis AF420877 AF420853 AF420665 AF420737
Tretioscincus agilis AF420891 AF420837 AF420681 AF420732
Tretioscincus oriximinensis AF420888 AF420846 AF420691 AF420752
Vanzosaura rubricauda X AF420839 AF420699 AF420716
Cnemidophorus ocellifer AF420914 AF420862 AF420706 AF420759
Kentropyx calcarata AF420913 AF420864 AF420707 AF420760
Tupinambis quadrilineatus AF420912 AF420863 X AF420761

APPENDIX 2
PROBLEMS DISCOVERED WITH THE PELLEGRINO ET AL.

(2001) DATA SET

After reconstructing phylogenies of each data partition separately
and combined, we identified four taxa from the Pellegrino et al. (2001)
study that demonstrated remarkable incongruence with regard to topo-
logical placement among individual gene phylogenies. After careful
examination of sequences, phylogenetic trees for independent data
partitions, and verification based on our own data collection, we con-
clude that the names Neusticurus juruazensis and Ptychoglossus brev-
ifrontalis were mistakenly switched by Pellegrino et al. (2001) in the
12S and 16S data sets. With the addition of our specimen of P. brev-
ifrontalis, this was obvious when examining the individual gene trees
for 12S and 16S; P. brevifrontalis of Pellegrino et al. (2001) (GenBank nos.
AF420757, AF420697) formed a clade with N. ecpleopus and N. strangu-
latus, whereas N. juruazensis (GenBank nos. AF420758, AF420704) was
virtually identical to our P. brevifrontalis. After examining the ND4 and
c-mos trees, it was evident that these taxa were inadvertently switched
in the 12S and 16S data sets. We swapped the names for these taxa for
all of our reconstructions.

An additional problem stems from the inferred phylogenetic place-
ment of Bachia dorbignyi (GenBank no. AF420861) and Arthrosaura
reticulata (GenBank no. AF420841) in the c-mos gene partition. These
two species had identical sequences and formed a close sister
relationship with Cercosaura eigenmanni. This relationship can been seen
in the squamate phylogeny reconstruction of Harris (2003), which used
these same sequences. They differed from C. eigenmanni by one base
substitution and appeared to be distantly related to other species of
Bachia (47 and 51 base substitutions) and from the other three mem-
bers of the Ecpleopini, for which c-mos sequence was available by
52 to 89 base differences (Colobosauroides cearensis, 77; Ecpleopus gau-
dichaudii, 52; Leposoma oswaldoi, 89). In all other gene partitions Bachia
dorbignyi is closely related to its congeners and Arthrosaura reticu-
lata is closely related to other ecpleopiines. These phylogenetic po-
sitions are further supported by morphological features such as leg
reduction in all species of Bachia. We cannot say with certainty what
this sequence represents but it appears most similar to Cercosaura
eigenmanni. Because we could not determine the true origin of the
sequences, we excluded these two c-mos sequences from all final
analyses.


