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ABSTRACT

Despite the ubiquitous use of statistical models for phylogenomic and population genomic inferences, 

this model-based rigor is rarely applied to post-hoc comparison of trees. In a recent study, Garba and 

colleagues derived new methods for measuring the distance between two gene trees computed as the 

difference in their site pattern probability distributions. Unlike traditional metrics that compare trees 

solely in terms of geometry, these measures consider gene trees and associated parameters as 

probabilistic models that can be compared using standard information theoretic approaches. 

Consequently, probabilistic measures of phylogenetic tree distance can be far more informative than 

simply comparisons of topology and/or branch lengths alone. However, in their current form, these 

distance measures are not suitable for the comparison of species tree models in the presence of gene 

tree heterogeneity. Here we demonstrate an approach for how the theory of Garba et al. (2018), 

which is based on gene tree distances, can be extended naturally to the comparison of species tree 

models. Multispecies coalescent models (MSC) parameterize the discrete probability distribution of 

gene trees conditioned upon a species tree with a particular topology and set of divergence times (in 

coalescent units), and thus provide a framework for measuring distances between species tree models 

in terms of their corresponding gene tree topology probabilities. We describe the computation of 

probabilistic species tree distances in the context of standard MSC models, which assume complete 

genetic isolation post-speciation, as well as recent theoretical extensions to the MSC in the form of 

network-based MSC models that relax this assumption and permit hybridization among taxa. We 

demonstrate these metrics using simulations and empirical species tree estimates and discuss both the 

benefits and limitations of these approaches. We make our species-tree distance approach available as 

an R package called pSTDistanceR, for open use by the community. 

Keywords: information theory, model comparison, species tree estimation, hypothesis testing.
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INTRODUCTION

Quantifying the degree of dissimilarity between phylogenetic tree structures has long been of interest 

to both mathematicians and evolutionary biologists alike. In particular, considerable attention has 

been directed towards characterizing the geometry of phylogenetic tree space and developing 

theoretical and empirical frameworks for measuring the distance between two trees (Estabrook et al. 

1985; Kim 2000; Moulton and Steel 2004; Owen 2011; Shi et al. 2013; Kuhner and Yamato 2015). 

Molecular systematic studies now routinely employ distance measures to quantify variation within 

sets of trees and assess statistical confidence (or lack of) when summarizing and comparing analyses. 

For example, phylogeneticists often want to compare trees estimated using different datasets and/or 

analytical approaches, which can potentially provide insight into underlying sources of phylogenetic 

conflict (e.g., Castoe et al. 2009; Reddy et al. 2017). This is important because, despite the increase in 

accuracy predicted to coincide with the ever-increasing size of phylogenomic datasets, phylogenetic 

estimates often vary greatly from study-to-study, and many species-level relationships remain as 

contentious as ever (Reddy et al. 2017; Shen et al. 2017; Walker et al. 2018). Robust methods for 

measuring phylogenetic distance can be used to dissect the causes and consequences such variation, 

and thus, their utility is increasingly evident in the face of widespread phylogenetic conflict that has 

persisted – and sometimes amplified – in the age of genome-scale datasets. 

A number of tree distance measures have been proposed, including the Robinson-Foulds metric 

(Robinson and Foulds 1979, 1981), quartet distance (Estabrook et al. 1985), the geodesic or Billera-

Holmes-Vogtmann (BHV) metric (Billera et al. 2001; Owen and Provan 2011), and many others. 

Traditionally, these approaches view phylogenetic trees strictly in terms of their geometric 

properties– that is, only the branching structure (i.e., topology) and/or branch lengths are considered 

when comparing two trees. Although these measures are usually rapid to compute and benefit from 
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relatively straightforward interpretations (e.g., the Robinson-Foulds metric measures the number of 

shared splits between a pair of trees), many are also paradoxically restricted by their own dependence 

on a strictly geometric perspective of trees. Ironically, in contrast to the relative simplicity of tree 

comparison approaches, tremendous effort has been directed towards understanding phylogenetic 

trees as probability generating models over the past decades – particularly in the analysis of genetic 

sequence data. From this model-based viewpoint, we consider the molecular evolutionary processes 

occurring along branches of a phylogeny that ultimately determine the probability of observing a 

particular pattern of nucleotides (or amino acids) at a single site. In other words, a phylogenetic tree 

model parameterizes the probability distribution of site patterns as a function of the topology, branch 

lengths, and other parameters relevant to the nucleotide substitution process (i.e., relative substitution 

rates, equilibrium base frequencies). Accordingly, rather than a depiction of tree space solely in terms 

of topology and/or branch lengths, a probabilistic phylogenetic model is most appropriately identified 

by a set of points in the space of site patterns, which has been referred to as “phylogenetic oranges” 

or “hyperdimensional oranges” (Kim 2000; Moulton and Steel 2004). 

Viewing phylogenies as probabilistic models instead of solely geometric structures suggests that 

potentially far greater information can be incorporated for the comparison of trees. For these reasons, 

Garba et al. (2018) proposed the use of probabilistic model-based distances to compare two trees by 

measuring the distance between their site pattern probability distributions. Unlike traditional 

measures based solely on topology and/or branch lengths, these measures effectively incorporate 

information encoded by parameters of the nucleotide substitution process. As predicted, probabilistic 

measures can be more informative than traditional topology or branch-length based distances (i.e., 

Fig. 2 of Garba et al. 2018). For example, two trees with exactly the same topology and branch 

lengths can yield very different site pattern probabilities if the nucleotide substitution parameters 

differ substantially, and conversely, trees with different topologies can exhibit similar site pattern 
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distributions depending on these parameters. In either case, measuring the distance between two trees 

in terms of their site pattern probability distributions is likely to illuminate important differences that 

may be overlooked or obscured when only conducting simple comparisons of topologies. 

Importantly, this model-based perspective of trees also forms the foundation of likelihood-based 

methods, such as maximum likelihood estimation (MLE) and Bayesian inference (BI), that have 

become cornerstones of contemporary molecular phylogenetics. Thus, there is an intuitive link 

between probabilistic phylogenetic inference and the probabilistic phylogenetic distance measures of 

Garba et al. (2018), such that trees can be directly compared within the same model-based framework 

used to estimate them.

Although the distance measures of Garba et al. (2018) mark a significant advancement towards more 

informative distance metrics, they are inherently limited in one fundamental aspect: they only 

measure distance between gene trees, not species trees per se. Species trees, rather than gene trees, 

depict the evolutionary relationships among organisms, and thus, reconstructing species-level 

relationships is the primary goal of most phylogenetic studies (Maddison 1997; Nichols 2001; 

Rannala and Yang 2003). The distinction between gene trees and species trees is critical when 

computing phylogenetic distances because individual gene trees may bear little resemblance to one 

another and with the species tree (Nichols 2001; Degnan and Rosenberg 2009). Incomplete lineage 

sorting (ILS) is perhaps the most pervasive and well-studied source of gene tree heterogeneity that is 

notorious for its ability to challenge species tree accuracy (Maddison 1997; Nichols 2001; Degnan 

and Salter 2005; Edwards 2009; Edwards et al. 2016). The multispecies coalescent (MSC) model was 

developed to accommodate ILS by merging phylogenetics and coalescent theory into a unified 

framework that models the evolution of gene trees imbedded within a species tree (Maddison 1997; 

Nichols 2001; Rannala and Yang 2003). A species tree model parameterizes the probability 

distribution of gene trees conditioned upon the species-level topology and set of divergence times in 
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coalescent units (with one coalescent time unit to be  generations where  is the effective 2𝑁𝑒 𝑁𝑒

population size). Under the MSC, gene trees are therefore permitted to vary from locus-to-locus as a 

result of the coalescent process occurring within branches of a species tree, and accordingly, site 

pattern probability distributions may also vary. The probabilistic metrics proposed by Garba et al. 

(2018) effectively ignore such variation because trees are constrained to a single topology when 

computing and comparing site pattern probabilities and thus, they cannot be used in their current 

form to measure the distance between two species tree models. These measures can be used to 

quantify the distance between any two gene trees, however, this provides only indirect (if inefficient) 

information about species-level distances. Only when all gene trees share the same topology, branch 

lengths, and substitution parameters will these measures directly translate to species tree 

comparisons. Fundamentally, the probabilistic phylogenetic distances proposed by Garba et al. 

(2018) therefore represent gene tree distances that are largely invalid for the comparison of species 

tree models in the presence of gene tree heterogeneity.

Another unique challenge arises when biological processes yield phylogenetic tree structures that are 

not strictly bifurcating. In particular, substantial effort has been directed towards developing models 

that incorporate hybridization events among species in the form of phylogenetic networks (Huson and 

Bryant 2006; Nakhleh 2010; Degnan and Ane 2017; Zhu and Degnan 2017). To model both ILS and 

hybridization, theoretical work has extended the MSC to derive network-based species models that 

depict hybridization events as interconnecting edges in the species tree (Degnan and Ane 2017; Zhu 

and Degnan 2017). In addition to a species topology and set of divergence times (in coalescent units), 

the presence of hybridization events in the species tree may also modulate gene tree probabilities. 

Much remains unknown about the space of phylogenetic networks, and it is not always clear how 

network distances should be computed because many existing metrics, including the probabilistic 

gene tree distances of Garba et al. (2018), as well as topology-based metrics (i.e., Robinson-Foulds 
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distances), are typically designed to measure strictly bifurcating trees and therefore must be modified 

to be relevant for reticulating species trees  (Cardona et al. 2009; Nakhleh 2010; Degnan and Ane 

2017). One particularly relevant concern for network model selection and inference involves the issue 

of identifiability: two networks can be mathematically or even practically indistinguishable because 

they induce identical (or nearly so) probability distributions on gene tree topologies (Zhu and Degnan 

2017). Although many have been generalized to networks, existing distance metrics often assume a 

distance of zero when comparing two networks that display the same topology when removing a 

subset of hybridization edges, even if their gene tree distributions differ (Cardona et al. 2009; Degnan 

and Ane 2017). Collectively, these findings suggest that a model-based approach may prove 

particularly relevant and useful for measuring species network distances because such an approach 

should, in theory, be able to detect differences (or a lack of differences) in the underlying gene tree 

probabilities. 

In this study, we discuss how the principles and theory of the probabilistic gene tree distance 

measures proposed by Garba et al. (2018) can be generalized for the computation of species tree 

distances. To derive analogous measures for computing species tree distances, we employ the MSC 

to parametrize the probability distribution of gene tree topologies conditioned upon a specific species 

tree and set of divergence times (in coalescent units). Just as Garba et al. (2018) viewed gene trees as 

parametric models that can be compared in terms of their site pattern probability distributions, here 

we measure the distance between two gene tree probability distributions induced by their respective 

species tree models under the MSC. We first briefly describe the gene tree distances of Garba et al. 

(2018) followed by a modification of these measures to species tree distances. We then demonstrate 

the utility of this approach using several examples of the MSC. Finally, we apply these measures to 

more complex network-based species models that present particularly challenging problems for 

phylogenetic model selection and inference.  
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METHODS

Probabilistic Species Tree Distances 

The probabilistic Gene Tree Distance (pGTD) measures proposed by Garba et al. (2018) compare 

two gene trees in terms of the difference in their site pattern probability distributions. Importantly, 

site patterns are considered independently and identically distributed (i.i.d.) in the computation of 

pGTD – meaning that gene tree topologies and/or branch lengths do not vary for a given tree. In the 

presence of gene tree heterogeneity, pGTD measures will not equate to species tree distances because 

they constrain gene trees to a single topology, branch lengths, and other parameters. We can, 

however, leverage the same principles of Garba et al. (2018) to derive probabilistic species tree 

distances by substituting species-level parameters into these same equations. See the Supplementary 

Materials and the original study (Garba et al. 2018) for a detailed treatment of probabilistic gene tree 

distances, which provides a basis for computing species tree distances in a similar manner. 

Here we describe how these principles can be used to derive probabilistic Species Tree Distances 

(pSTD) whereby the goal is to compare species-level relationships, rather than individual gene trees. 

Just as Garba et al. (2018) viewed gene trees as probability generating models, here we leverage the 

multispecies coalescent (MSC) model to measure the distance between two species trees in terms of 

their probability distributions on gene topologies. 

Under the standard MSC (i.e., lineages remain genetically-isolated), a species tree model  ϕ = {𝑇,   𝜆}

with  extant species defines a discrete probability distribution of all possible gene trees  as a 𝑛 𝐺𝑛

function of the species topology ( ) and set of divergence times ( ) in coalescent units. If only a 𝑇 𝜆

single lineage is sampled per species, the total number of possible rooted gene tree topologies is |𝐺𝑛|

, and the probability of a particular topology  in  is computed as a function of the =  
(2𝑛 ― 3)!

2𝑛 ― 2 (𝑛 ― 2)! 𝑔 𝐺𝑛
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species tree model: ). To derive species tree distances, we replace terms in the 𝑃(𝑔|ϕ =  {𝑇,   𝜆}

equations of Garba et al. (2018) to reflect species models  and their associated gene tree topology ϕ

probability distributions (Equations provided in the Supplementary Materials). The distance between 

two species tree models  and  is computed as:ϕ1 = {𝑇1,   𝜆1} ϕ2 = {𝑇2,   𝜆2}

𝑑(ϕ1,  ϕ2) =  𝑑(𝑃(𝐺𝑛|𝑇1,   𝜆1) , 𝑃(𝐺𝑛|𝑇2,   𝜆2))   (1)

where is the probability distribution of gene tree topologies given the model 𝑃(𝐺𝑛|𝑇1,   𝜆1) 

parameters (likewise for ) and can represent the Hellinger distance ( ), the ϕ1 ϕ2 𝑑(ϕ1,  ϕ2) 𝑑𝐻

Kullback-Leibler distance ( ), or the Jensen-Shannon distance ( ), shown below in Equations 2-𝑑𝐾𝐿 𝑑2
𝐽𝑆

4:

𝑑𝐻(ϕ1,  ϕ2)2 =
1
2∑

𝑔𝜖𝐺𝑛
( 𝑃(𝑔│ϕ1) ― 𝑃(𝑔│ϕ2))2

 (2)

𝑑𝐾𝐿(ϕ1,  ϕ2) = ∑
𝑔𝜖𝐺𝑛

𝑃(𝑔│ϕ1) × log (𝑃(𝑔│ϕ1)
𝑃(𝑔│ϕ2))  (3)

𝑑2
𝐽𝑆(ϕ1,  ϕ2) =

1
2𝑑𝐾𝐿(𝑃(𝑔│ϕ1);

𝑃(𝑔│ϕ1) + 𝑃(𝑔│ϕ2)
2 ) +

1
2𝑑𝐾𝐿(𝑃(𝑔│ϕ2);

𝑃(𝑔│ϕ1) + 𝑃(𝑔│ϕ2)
2 )(4)

We have implemented these equations in an R software package (pSTDistancesR) that uses 

HYBRID-COAL (Zhu and Degnan 2017) to calculate gene tree topology probabilities (see Software 

Availability section below). These equations are effectively the same equations proposed by Garba et 

al. (2018) except that gene-tree and substitution parameters have been replaced by species-level 

parameters. For each possible genealogy in , we record the difference in the probability of that 𝐺𝑛

genealogy between two species tree models and sum these differences across gene tree space using 

Equations 1-4. For example, consider two 4-species tree models and . In this case, there is a ϕ1 ϕ2

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article-abstract/doi/10.1093/sysbio/syz031/5488962 by guest on 14 M

ay 2019



10

total of  possible gene tree topologies, and for each topology in this set , we |𝐺4| =  
(8 ― 3)!

24 ― 2 (4 ― 2)! = 15 𝐺4

measure the difference between its probabilities under  and  using Equations 2-4. By ϕ1 ϕ2

implementing the MSC in such a manner, we are effectively incorporating information about the 

coalescent process running along branches of the species tree model when computing distances. For 

example, two species trees can have the exact same topology (i.e., = Robinson-Foulds 𝑇1 = 𝑇2

distance of zero) but very different gene tree distributions depending on the branch lengths, which 

determine the probability that a pair of lineages coalesce within a particular species branch. We also 

note that the Kullback-Leibler distance is not a true metric because it is not symmetric (i.e., 𝑑𝐾𝐿

) and does not satisfy the triangle equality (see Supplementary Materials (ϕ1,  ϕ2) ≠  𝑑𝐾𝐿(ϕ2,  ϕ1) 

for more information) – this is a fundamental property of the Kullback-Leibler distance that is 

relevant to any of its applications, including the original gene tree distances of Garba et al. (2018). 

Despite this limitation, we include the Kullback-Leibler distance here because of its wide use for 

model comparison, particularly in the field of systematics. 

For the purposes of this study, we primarily discuss the computation of pSTD on species trees with 

relatively fewer tips (<10), for which probabilistic distances can be computed analytically using 

Equations 2-4. However, the total number of possible gene tree topologies  can be tremendous |𝐺𝑛|

for larger species trees, and these distances can be estimated using simulations in a manner similar to 

Garba et al. (2018). For example, we can obtain a sample of  gene topologies from each species 𝑚

tree and approximate the Hellinger and Kullback-Leibler distance between  and  as:ϕ1 ϕ2

𝑑 ∗
𝐻 (ϕ1,  ϕ2)2 ≃ 1 ― ( 1

2𝑚)∑𝑚
𝑖 = 1( 𝑃(𝒈𝑖, ϕ1│ϕ2)

𝑃(𝒈𝑖, ϕ1│ϕ1) +
𝑃(𝒈𝑖, ϕ2│ϕ1)
𝑃(𝒈i, ϕ2│ϕ2)) (5)

 𝑑 ∗
𝐾𝐿(ϕ1,  ϕ2) ≃

1
𝑚∑𝑚

𝑖 = 1log (𝑃(𝒈𝑖, ϕ1│ϕ1)
𝑃(𝒈𝑖, ϕ1│ϕ2))  (6)
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To explore potential advantages and disadvantages of pSTD in relation to other metrics, we computed 

pSTD in two scenarios: a pair of bifurcating species trees with the same topology and branch lengths 

that only differ by a scaling factor  (Fig. 1a vs. Fig. 1b), and a pair of species trees with the same 𝛾

topology and branch lengths that are identical except for one internal branch that is scaled by  (Fig. 𝛾

1a vs. Fig. 1c). These scenarios represent similar examples to those shown in Figure 2 and Figure 3a 

of Garba et al. (2018) in which either a single branch or all branches of gene trees were scaled by a 

factor when comparing pGTD and BHV metrics. For the first scenario, we consider two bifurcating 

species tree models  and  that share the same topology (i.e., ), ϕ1 = {𝑇1,   𝜆1} ϕ2 = {𝑇2,   𝜆2} 𝑇1 = 𝑇2

but the branch lengths of the second model are obtained by scaling the branch lengths of   by a ϕ2 ϕ1

factor , such that  (Figure 1a vs. Figure 1b). Similarly, in the second scenario, only the 𝛾 𝜆2 = 𝛾𝜆1

length of the internal branch for the second species tree is scaled by  (Fig. 1c). To explore the 𝛾

properties of pSTD under varying degrees of ILS, we specify  to the following (in newick format): ϕ1

"(((A:1,B:1):1,C:2):1,D:3)" and we allow  to vary from . 𝛾 0 –10

Probabilistic Distances as a Framework for Comparing Increasingly Complex Species Tree Models 

While comparing gene tree topology distributions under multispecies coalescent models is the 

primary focus of this study, we argue that this approach could be extended to incorporate and 

compare species tree models that include other evolutionary processes, such as migration, 

hybridization, recombination, and selection, among others. Here we demonstrate two potential 

extensions of our pSTD approach: (1) reticulating species tree models and (2) nucleotide site pattern 

probabilities. In the previous section, we have applied a simplistic and commonly used interpretation 

of the MSC whereby species are assumed to diverge in genetic isolation from one another in the 

absence of gene flow, natural selection, migration, hybridization, or any other evolutionary process. 

That is, the probability of a gene tree topology (used to compute the distances of Equations 2-6) is 

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article-abstract/doi/10.1093/sysbio/syz031/5488962 by guest on 14 M

ay 2019



12

only a function of the species tree topology and branch lengths in coalescent units, such that all gene 

tree topology heterogeneity is assumed to arise from ILS. Recent work has expanded the MSC to 

accommodate hybridization with the development of Network Multispecies Coalescent (NMSC) 

models (Degnan and Ane 2017; Zhu and Degnan 2017). The NMSC can be incorporated into our 

pSTD equations to compute the distances between network species models that include hybridization 

edges. For example, the species model  can include a network topology (instead of a strict ϕ

bifurcating tree) and other parameters associated with the timing and duration of hybridization. 

Species models with different network topologies can therefore be compared with one another, and 

with models that do not include hybridization. To explore the utility of pSTD for comparing complex 

phylogenetic structures, we computed probabilistic distances between two species tree networks (Fig. 

2a vs. 2b), and separately between a network and a bifurcating tree (Fig. 2a vs. 2c). These networks 

(Fig. 2a-b) were chosen because they present particularly challenging problems for network-inference 

and distance computation, and were used in recent studies of network models (Degnan and Ane 2017; 

Zhu and Degnan 2017). In the first scenario, the two different species networks display the same tree 

after removal of hybridization edges that differentiate the two networks. As before, we let the edge 

lengths of  scale by a factor  that ranges from . In a second example, we use pSTD to ϕ2 𝛾 0 –10

compute the distance between a network (Fig. 2a) and a bifurcating species tree model (Fig. 2c). 

Another example extension of these distances is the incorporation of mutational processes that give 

rise to molecular sequence data. For example, probabilistic distances may also incorporate site pattern 

probabilities that are contingent upon the gene tree distributions, thereby providing a natural 

comparison to the gene tree distances of Garba et al. (2018). We demonstrate the utility of 

incorporating mutation into the probabilistic species tree distances by computing pSTD between two 

species tree models (Fig. 3a vs. 3b) across a range of branch scaling values to obtain the second tree 

(Fig. 3b). For these examples we use a mutation rate of  under the 4-state JC69 model 𝜇 = 10 ―5
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(Jukes and Cantor 1969) using the site pattern probability equations and example species trees 

provided in Chifman and Kubatko (2015), and a scaled population size parameter  𝜃 = 2𝑁𝑒𝜇 = 0.10

for all branches in the model (Fig. 3).  

Four Empirical Demonstrations of Probabilistic Species Tree Distances

We applied our probabilistic species tree distance measures to four different empirical examples that 

included: (1) quantifying variation within a set of species tree estimates obtained using resampling 

procedures (i.e., bootstrapping) across different genomic regions, (2) comparing species trees 

estimated using different methods and/or datasets, (3) dissecting contentious estimates of 

phylogenetic relationships, and (4) characterizing a Bayesian posterior probability distribution of 

species tree model estimates obtain via Markov Chain Monte Carlo (MCMC) sampling. For the first 

and second demonstrations, we used the avian phylogenomic analyses (Jarvis et al. 2014) as an 

example dataset because this dataset has been used as a case-study for understanding the performance 

of species tree estimation methods on genome-scale datasets (Mirarab et al. 2014; Liu and Edwards 

2015) and for dissecting causes of phylogenetic conflict (Reddy et al., 2017). We downloaded a set of 

14,446 estimated gene trees and a set of 32 species tree topologies that were estimated in the original 

study (i.e., Jarvis et al., 2014) or estimated in previous studies (i.e., Prum et al. 2015), which allowed 

us to compare species tree estimates across different datasets and approaches. We pruned these trees 

down to 8 focal taxa that represent challenging and contentious problems for resolution of the avian 

phylogeny: bald eagle (Haliaeetus_leucocephalus), barn owl (Tyto alba), speckled mousebird (Colius 

striatus), cuckoo roller (Leptosomus discolor), downy woodpecker (Picoides pubescens), carmine 

bee-eater (Merops nubicus), rhinoceros hornbill (Buceros rhinoceros), and bar-tailed trogon 

(Apaloderma vittatum). For all analyses, probabilistic distances between species trees were computed 

analytically using Equations 1-4. 
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For the first demonstration, we quantified variation among sets of bootstrapped species trees that 

were estimated from different chromosomes. For each of the five first chromosomes of the chicken 

genome (Gallus_gallus-5.0; GCA_000002315.3; Warren et al., 2017), we obtained a set containing 

all available gene trees that were estimated in Jarvis et al. (2014) for that chromosome, and we used 

these gene tree sets to conduct nonparametric bootstrap resampling (with 10 replicates) independently 

for each chromosome using MP-EST (Liu et al. 2010). In other words, we obtained 10 bootstrapped 

species tree estimates for chromosome one, and so on, for each of the five largest autosomes using 

their respective gene tree sets. We used multidimensional scaling of the Hellinger distance (computed 

analytically using Eq. 4), and the R package TREESPACE (Jombart et al. 2017) to characterize 

variability among chromosome-scale species tree estimates in the phylogenetic placement of avian 

lineages. In the second demonstration, we computed pairwise species tree distances between 32 

different estimates of the avian phylogeny. These 32 different estimates were obtained using different 

datasets, models, methods, and studies, and were analyzed in the context of the original genome-scale 

inferences of Jarvis et al., (2014) or subsequent critical reanalysis of these data (Prum et al. 2015b; 

Reddy et al. 2017). We used the program MP-EST (Liu et al. 2010) to estimate the branch lengths of 

these species trees in coalescent units following the general protocol of Jarvis et al., (2014). We 

computed pairwise distances between all 32 species trees, and used these to construct a cluster-based 

NJ tree using the R package PHANGORN (Schliep 2011) to quantify similarities among estimates. 

For the third demonstration, we used three case-studies of contentious relationships (Amphibians, 

Neoaves, and Reptiles) that were highlighted in a recent study focused on the causes and 

consequences of phylogenetic conflict (Table 1 in Shen et al. 2017). We downloaded six species trees 

(shown in Fig. 6) and the set of 9,363 gene trees from the original study (Shen et al. 2017), which we 

used to estimate the branch lengths of species trees in coalescent units using MPEST. We computed 

probabilistic distances between each of the three species tree pairs, as well as both the rooted and 
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unrooted Robinson-Fould distances, and the BHV metric. For the fourth application, we used an 

example dataset for estimating species-level relationships of Canids using Bayesian species tree 

estimation with the program StarBEAST2 (Ogilvie et al. 2017). We downloaded the 

CanisPhylogeny-example.xml file from the ‘example files’ that are provided with StarBEAST2, and 

ran the MCMC chain for a total of 6,000 iterations using this example file. We sequentially sampled 

10 species tree estimates every 1,000 generations (total of 60), and computed the pairwise Hellinger 

distances between all 60 species tree estimates using Equation 2. 

RESULTS

Scaling Species Divergence Times

Comparing species tree distances across an array of branch scaling factors highlights the benefits of 

incorporating gene tree probability distributions for comparing and contrasting species tree distance 

measures (Fig. 1). In the comparison of two bifurcating species trees with the same topology and 

branch lengths that only differ by a scaling factor  (Fig. 1a vs. Fig. 1b), probabilistic distance 𝛾

measures show little resemblance to the BHV metric across an array of values for  (Fig. 1d). Scaling 𝛾

branch lengths by  results in complex differences in the underlying gene tree probability 𝛾

distributions that are reflected by differences in the probabilistic measures shown in Figure 1, while 

the Robinson-Foulds distance is zero in all cases for trees shown in Figures 1 and 2. In contrast, the 

BHV metric simply scales linearly with , while the Hellinger, Kullback-Leibler, and Jensen-𝛾

Shannon distances exhibit more complex relationships. In the second scenario for which only a single 

branch of  is scaled by  (i.e., all other branches remain unchanged; Fig. 1a vs. Fig. 1c), we ϕ2 𝛾

observe similar trends with pSTD that provide more informative comparisons between two trees (Fig. 

1e). The Hellinger and Jensen-Shannon distance metrics exhibit asymptotic trends toward their 
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respective limits (Fig. 1d-e), suggesting diminishing impacts of branch length scaling on gene tree 

probability distributions with larger values of . 𝛾

Comparing More Complex Species Tree Models Using pSTD

Probabilistic network distances are able to compare complex species tree structures, and we 

demonstrate that here across two examples: between two species tree networks that display the same 

tree (after removal of hybridization edges that differentiate the two networks; Fig. 2a vs. 2b), and 

between a network and a bifurcating tree (Fig. 2a vs. 2c). pSTD computed in both scenarios reveal 

the effects of branch scaling on network distances (Fig. 2d), and the potential utility of pSTD for 

comparing a network with a bifurcating tree. (Fig. 2e). As with the examples shown in Figure 1, we 

see that the Hellinger and Jensen-Shannon distances appear to exhibit asymptotic behavior as the 

edge length differences increase between species models. However, the Kullback-Leibler distance, 

which is not a metric (i.e., it is asymmetric and does not satisfy the triangle inequality), increases far 

more rapidly, particularly when comparing a network and a bifurcating topology (Fig. 2e). 

Although we have primarily focused on comparing gene tree distributions, we also show how 

nucleotide site pattern probabilities can be incorporated into the distance computations to 

demonstrate an additional extension of the species tree distance approach. Comparing two species 

tree models (Fig. 3a vs. 3b) in terms of their site pattern probability distributions under the 

multispecies coalescent model + 4-state JC69 model highlight the ability for pSTD approaches to 

effectively incorporate mutational processes when comparing phylogenetic models (Fig. 3c). As 

before, we see that the BHV metric simply scales linearly as species trees differentiate. For example, 

the probabilistic distances shown in Figure 3 exhibit complex shifts in slope as the internal branch 

lengths of the species tree become more distant. As before, the Robinson-Foulds distance is zero in 

all cases. 
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Four Empirical Applications of pSTD

In our first example application of pSTD, variation in key nodes of the avian phylogeny was 

quantified by comparing distances between bootstrap replicates estimated from different 

chromosomes (Fig. 4). This was visualized using multidimensional scaling (MDS; Hillis et al. 2005) 

of the Hellinger distance (Eq. 2), providing a detailed depiction of the bootstrap sampling space of 

species trees across chromosomes, highlighting both differences and similarities among 

chromosomes in species tree estimates (Fig. 4). For example, species tree estimates derived from 

chicken chromosome 3 show greater variation that those derived from chromosome 2, while 

estimates from chromosome 4 and 5 show substantial overlap with one another. 

Our second empirical application demonstrated pSTD by applying these distances to quantify 

variation in avian species tree estimates inferred from different data subsets, models, and inferential 

approaches (Jarvis et al. 2014;  Reddy et al., 2017; Prum et al. 2015). Clustering of species tree 

estimates based on pSTD (i.e., Hellinger distance, Eq. 2) are markedly different than those based on 

Robinson-Foulds distances alone (Fig. 5a vs. Fig. 5b), and more informative (i.e., the collapsed nodes 

in Fig. 5b provide no additional information). Our clustering of species trees based on pSTD differs 

notably from the results shown in Reddy et al. (2017) previously used to characterize and understand 

conflict among species trees estimated using different datasets (i.e., Fig. 6 of Reddy et al. 2017). 

Perhaps the most apparent contradiction between our clustering results based on pSTD and other 

metrics is the disparate clustering of species trees obtained using the so-called heuristic “statistical 

binning” approaches, which attempt to build longer supergenes prior to gene tree estimation (Mirarab 

et al. 2014), and all other metrics (Fig. 5a). For example, the “unbinned” intron and total evidence 

(“TENT”) species trees formed a cluster distant from “binned” analyses of these same datasets based 

on pSTD (Fig. 5a), and conversely, the “binned” and “unbinned” analyses of these two datasets 
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cluster together when compared using the Robinson-Foulds metric (Fig. 5b). pSTD-based clustering 

also highlights major discrepancies in the placement of the “PRUM 2015” tree, suggesting very 

different gene tree probability distributions between this tree and the “binning” trees estimated in 

Jarvis et al. (2014). For example, the Hellinger distance (Eq. 2) suggests that the “PRUM 2015” tree 

and the unbinned analyses are more similar to one another (Fig. 5a), yet the Robinson-Fould metric 

indicates that the topology of this tree is identical to the tree obtained in Jarvis et al. (2014) using the 

“binned” analysis of introns (Fig. 5b). 

We used pSTD to explore species tree distances for several vertebrate clades that included 

contentious relationships based on previous studies as a third empirical application of pSTD. These 

analyses demonstrate that probabilistic measures of species tree distance can be particularly useful for 

enabling more complete dissection of differences in topology and branch lengths that differentiate 

contentious species tree inferences (Fig. 6). In all three test-case examples taken from Shen et al. 

(2017), the unrooted Robinson-Foulds distance is zero, while the various probabilistic measures 

effectively compare these contentious estimates in terms of their gene tree probability distributions. 

Finally, in our four demonstration, we used pSTD to characterize a posterior distribution of species 

tree estimates sampled at different times along a single MCMC chain from a StarBEAST2 run. This 

example demonstrates well that pSTD can be particularly useful for dissecting variation among 

estimates, and even for testing for convergence of MCMC chains (Fig. 7). MDS of the pairwise 

Hellinger distance indicates that samples taken earlier in MCMC show greater variation (e.g., MCMC 

Set 1, Fig. 7) compared to samples taken later in the MCMC consistent with convergence of the 

MCMC towards the posterior. 
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DISCUSSION 

Over the past few decades, tremendous effort has been directed towards understanding phylogenetic 

trees as probability generating models on character data. Indeed, phylogenetic inference is now 

predominantly a model-based endeavor whereby evidence in support of alternative hypotheses can be 

assessed and quantitatively leveraged to estimate parameters and significance. While the application 

of model-based frameworks to statistical inference has become a cornerstone of contemporary 

molecular phylogenetics, model-based approaches for comparing phylogenetic trees are still in their 

relative infancy. Given the ubiquitous use of statistical models for the purpose of evolutionary 

inference, it seems ironic that studies rarely (if ever) conduct a model-based comparison of trees that 

were estimated within a model-based framework. The probabilistic measures proposed by Garba et 

al. (2018) improve substantially upon the shortcomings of previous approaches, but their application 

is largely restricted to gene tree comparisons and are not directly applicable to models of species trees 

and networks. Here we have generalized these approaches to derive probabilistic species tree distance 

measures. 

Understanding the species-level relationships among organisms is the primary focus of the majority 

of phylogenetic studies, such that gene trees are typically viewed as “nuisance parameters” because 

they often conflict strongly with one another and may individually provide little insight into the true, 

species-level relationships. Gene tree heterogeneity is widespread in nature and often poses 

significant challenges for phylogenetic inference as a result of different evolutionary processes, 

including incomplete lineage sorting (Heled and Drummond 2010; Camargo et al. 2012), migration 

(Zhang et al. 2011; Qu et al. 2012; Leaché et al. 2014), hybridization (Meng and Kubatko 2009; Zhu 

and Degnan 2017), recombination (Lanier and Knowles 2012), and selection (Castoe et al. 2009, 

2010; Adams et al. 2018). The impacts of gene tree variation on species tree estimation have been a 
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central topic of interest for the past few decades, resulting in the development of multispecies 

coalescent models for accommodating ILS and its associated gene tree conflicts (Nichols 2001; 

Rannala and Yang 2003; Heled and Drummond 2010; Edwards et al. 2016). By implementing the 

multispecies coalescent model, pSTD provide a means for comparing species trees in terms of their 

induced gene tree probabilities, which can provide more information than simple measures of 

topology and/or branch lengths of species trees. Species trees are now commonly estimated within 

the MSC framework, and thus, pSTD measures allow species trees to be compared within the same 

framework used to estimate them. Furthermore, we have shown that these probabilistic measures 

represent a general framework that is easily extended for comparing increasingly complex species 

tree models that consider other evolutionary processes in addition to ILS (i.e., Fig. 2-3). 

Here we have demonstrated several applications for pSTD, although many more diverse applications 

likely exist, particularly considering that the method itself can be readily modified to incorporate 

more complex versions of the standard MSC model. Importantly, we demonstrate the utility of pSTD 

for illuminating differences in species tree estimates likely driven by biological, methodological and 

statistical factors. For example, in the limited number of applications included in this study we were 

able to demonstrate how using pSTD can illuminate distinct biologically-relevant phylogenetic signal 

from different chromosomes (Fig. 3), and also be used to diagnose statistical properties and variation 

among species tree estimates sampled by bootstrapping or from Bayesian MCMC chains (Figs. 4 and 

7). We also demonstrated how pSTD may be extended to incorporate additional processes, such as 

hybridization and mutation which further increase the flexibility and thus the utility of pSTD. In one 

of these demonstrations we use an extended form of pSTD to compare among speciation network 

hypotheses, and between network-based and bifurcating species trees (Fig. 2) – both of which 

represent key challenges to other methods and priorities for modern speciation research (Degnan and 

Ane 2017; Zhu and Degnan 2017). Although here we have focused on the derivation of species tree 
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distances using gene tree topology probabilities alone, effectively incorporating full gene tree 

probabilities (i.e., including topology and coalescent time variation) may be useful future extensions 

of these distances. 

Our example applications of pSTD also highlight the utility of these distances for dissecting the basis 

of variation in species tree inferences derived from different analytical approaches, datasets, or 

phylogenetic models (Fig. 5). In these comparisons that utilize species tree inferences based on avian 

phylogenomic data (Jarvis et al. 2014;  Reddy et al., 2017; Prum et al. 2015),  pSTD measures 

suggest that a model-based comparison of species trees can be far more informative than simple 

topology and/or branch length comparisons. Intriguingly, pSTD-based clustering indicated that avian 

phylogenomic species tree estimates tend to cluster together based on the specific method used (i.e., 

the “unbinned” MP-EST analyses clustered separately from the “binned” analyses in Fig. 5a), rather 

than the particular dataset used. This result contradicts clustering based simply on topology alone, 

which indicates the species tree estimates obtained using the same data-type are more similar (Fig. 

5b). For example, the TENT (total nucleotide evidence trees) inferred in Jarvis et al. (2014) exhibited 

the same topology regardless of whether the “binned” or “unbinned” approach was used (Fig. 5b), 

and yet, these two species trees induce very different gene tree probability distributions, which is 

reflected when computing pSTD (Fig. 5a). These findings also agree with recent studies that suggest 

heuristic species tree approaches may have particularly strong and misleading influence on species 

tree estimation (Liu and Edwards 2015; Roch et al. 2018). Therefore, pSTD comparisons of species 

tree distributions may provide insight into the potential effects that species tree methods may impose 

on species tree inference that is not otherwise identified by other measures. 

Our example applications of pSTD also highlight the broad utility of the approach for investigating 

model identifiability (or lack of) in several contexts – a topic that represents a major concern for 
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species tree estimation (Chifman and Kubatko 2015; Degnan and Ane 2017; Zhu and Degnan 2017). 

In the context of the MSC, this means that the number of gene trees required to distinguish between 

competing species tree models may exceed the limits of reasonably-sized empirical datasets for two 

models that are practically indistinguishable. Previous studies have demonstrated that species trees 

are identifiably from the distributions of unrooted gene trees (Allman et al. 2011) and pSTD reflect 

this property. The practical ramifications of model identifiability are critical considerations for 

empirical studies because gene trees themselves are always estimated (rather than known), which 

introduces another source of potential error into the problem. The problem of identifiability has been 

particularly relevant in the context of reticulating phylogenetic networks (Degnan and Ane 2017; Zhu 

and Degnan 2017), and our analyses highlight the utility of pSTD as a tool for understanding model 

identifiability of complex species tree models. Indeed, modeling species hybridization entails 

numerous challenges for phylogenetic model selection and inference. If the number of hybridization 

events is unbounded, for example, the space of phylogenetic networks is infinitely large, suggesting 

that the size of network space can be much larger than that of bifurcating trees (Degnan and Ane 

2017; Zhu and Degnan 2017). The inherent difficulties of computing network distances has been 

noted by previous authors (Degnan and Ane 2017), and several traditional geometric-based measures, 

such as the Robinson-Foulds distance, have been augmented for the comparison of network 

topologies (Cardona et al. 2009; Nakhleh 2010), but make several limiting assumptions. Here we 

have shown that pSTD can be readily extended for comparing reticulating species trees because it can 

determine whether networks are indistinguishable (i.e., pSTD = 0) or distinguishable (i.e., pSTD > 0) 

in terms of their gene tree probabilities. For example, our distance metrics are able to quantify and 

confirm previous studies demonstrating the indistinguishability of networks that display the same 

topologies when only a single allele is sampled per species because their probabilistic distance is zero 

(Fig. 2d). Additionally, we have shown that pSTD can be used to measure the distance between a 
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species network and a strictly bifurcating model (Fig. 2e). Collectively, these results suggest that 

pSTD may provide a particularly valuable framework for enabling meaningful comparisons of 

complex phylogenetic tree structures and a means for understanding the identifiability of these 

complex models – areas of great importance for the continued development and implementation of 

more realistic phylogenetic models. 

Although the species tree distance measures discussed in this study entail several advantages and 

useful applications, they also are limited in several key ways. One key limitation is the higher 

computational cost of measuring model-based distances for species trees, compared to simple 

topology or related measures, which would scale with the number of taxa in the tree. For this study, 

we have demonstrated these measures using trees with fewer taxa (i.e., <10) to improve 

computational tractability, and for the purpose of understanding the relationships of specific 

contentious subclades (i.e., Fig. 6). The time taken to compute the 6000 pSTD shown in Figure 1 was 

~1.5 minutes, while the 6000 computations shown in Figure 2 were completed in ~4 minutes, both 

using an Intel(R) Core i5 3.8GHz processor. To measure the distance between different estimates of 

the avian phylogeny (Fig. 4-5) and for the examples of contentious phylogenetic estimates (Fig. 6), 

we increased computational feasibility by subsampling the phylogeny and computing distances 

between subtrees extracted from a larger tree. This approach is similar to the pruning strategy 

employed by Reddey et al. (2017) that compared the phylogenetic placement of specific “indicator 

clades”. Another limitation is the number of lineages sampled per species. Currently, the software we 

used to compute gene tree probabilities under the MSC and NMSC (i.e., HYBRID-COAL; Zhu and 

Degnan 2017) provides gene tree probability distributions conditioned upon a single individual (i.e., 

single haploid sequence) sampled per species, although more complex sampling schemes should be 

relatively straightforward to incorporate. One popular application of the MSC is for conducting 

species delimitation to evaluate alternative models of speciation (i.e., different schemes for lumping 
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or splitting of individuals into species; Fujita et al., 2012; Yang and Rannala, 2010), and pSTD 

permit the comparison of species delimitation models in precise terms of their gene tree probabilities. 

Theoretically, internal branch lengths in the species tree could be set to zero to compare models that 

split or lump individuals into a single species or population. Currently, the pSTD measures discussed 

in this study only consider ILS and hybridization, yet many other evolutionary processes may 

generate gene tree heterogeneity. Despite its limitations, the broad applicability and extendibility  of 

the pSTD approach argues for its broad value and utility for addressing biological, methodological, 

and statistical questions in the context of the MSC – many of which were not readily addressed with 

previous measures. 

CONCLUSIONS

Phylogenetic distance measures have become an integral part of phylogenetic analyses with broad 

applications across the field of evolutionary biology. Probabilistic measures of tree distances provide 

an intuitive framework for comparing model-based estimates of phylogeny and incorporate inherent 

advantages over traditional measures that compare only topology and branch lengths. Here we have 

generalized the same theory and statistical framework used for computing gene tree distances to the 

context of probabilistic species tree model comparison. This logical extension of gene tree distances 

to species tree models enables a broad spectrum of enhanced model comparisons that fill an 

important gap for comparing species tree models, including non-bifurcating network models. Indeed, 

computing network distances has historically proved difficult, and our demonstrations here show how 

probabilistic-based distances can be leveraged to compare species networks in the precise terms of 

their gene tree probabilities. As further extensions and advancements improve the complexity of 

species tree models, we envision that these distance measures can provide an increasingly valuable 
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foundation for comparing models that incorporate a wide-range of evolutionary processes, such as 

migration, recombination, and natural selection. 

SOFTWARE AVAILABILITY

We developed an open source software package pSTDistanceR written in R 3.4.1 (R Core Team 

2017) and C++ that computes the Hellinger, Kullback-Leibler, and Jensen-Shannon pSTD using 

Equations 1-6 and the program HYBRID-COAL (Zhu and Degnan 2017), which is used to extract 

gene tree probabilities under both the standard MSC (without hybridization) and the NMSC. 

pSTDistanceR is freely available on github: https://github.com/radamsRHA/pSTDistanceR/. All 

scripts used to generate the figures in the study are provided in the Supplementary Materials. 
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FIGURE LEGENDS

FIGURE 1. Species tree models and phylogenetic distances for two scenarios of branch scaling. The 

first species tree model is shown in (a), which was used to obtain the second species model (b) by 
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scaling all branch lengths by a factor . The Hellinger ( ), BHV ( ), Jensen-Shannon ( ), and 𝛾 𝑑𝐻 𝑑𝐵𝐻𝑉 𝑑𝐽𝑆

Kullback-Leibler ( ) distances between (a) and (b) are shown in plot (d). Similarity, the length of a 𝑑𝐾𝐿

single internal branch in species tree (a) was scaled by  to obtain the species tree shown in (c). Plot 𝛾

(d) shows the distances across a range of  when comparing (a) and (c). Note that in all cases, the 𝛾

Robinson-Foulds distance is zero (i.e., topologies are identical).

FIGURE 2. Species models and probabilistic distances for two scenarios of branch scaling. The first 

network model is shown in (a), which was used to obtain the second species model (b) by scaling all 

branch lengths by a factor . Probabilistic species tree distances computed between (a) and (b) are 𝛾

shown in plot (d). Plot (e) shows the same probabilistic distances computed across a range of  when 𝛾

comparing (a) and the bifurcating species tree model shown in (c). 

FIGURE 3. Probabilistic distances that incorporate site pattern probabilities using the 4-state JC69 

model under the multispecies coalescent. Species tree distances measured between (a) and (b) are 

shown in plot (c) across a range of branch length scaling for the height of species tree (b). 

FIGURE 4. Multidimensional scaling of the pairwise Hellinger distances (Eq. 2) between bootstrap 

estimates of species trees obtained for the first five chromosomes (10 bootstrap replicates per 

chromosome) of the chicken genome. Bootstrapping was conducted using all available gene trees for 

each respective chromosome. Tree symbols and groups coloring based on chromosome. 

FIGURE 5. Clustering of species tree distances computed between 32 estimates of the avian 

phylogeny using the Hellinger pSTD (a) and Robinson-Foulds metric (b). Dendrograms were 

generated using the NJ algorithm with midpoint rooting, and tree names were obtained from the 

original study and reflect the particular dataset used (i.e., exons, introns, total nucleotide evidence 
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“TENT”) and approach (i.e., “unbinned” vs. “binned” MP-EST analyses). The tree inferred in Prum 

et al. (2015) is highlighted as “PRUM 2015”. Clades were collapsed if the distance was zero. 

FIGURE 6. Measuring probabilistic distances between estimates of contentious species tree 

relationships for three case-studies of animals from Shen et al. (2017). Cophylo plots show two 

alternative species tree hypotheses (T1 and T2) for Amphibians (top), Neoaves (middle), and Reptiles 

(bottom). Barplots show the Hellinger distance ( ),), Kullback-Leibler ( ) distance measured 𝑑𝐻 𝑑𝐾𝐿

from T1 to T2 ( )), the Kullback-Leibler ( ) measured from T2 to T1 ( )), the 𝑑𝐾𝐿(𝑇1, 𝑇2 𝑑𝐾𝐿 𝑑𝐾𝐿(𝑇2, 𝑇1

Jensen-Shannon ( ), the rooted Robinson-Foulds distance (RFrooted), the unrooteed Robinson-Foulds 𝑑𝐽𝑆

distance (RFunrooted), and the BHV distance ( ). 𝑑𝐵𝐻𝑉

FIGURE 7. MDS of the pairwise Hellinger distances (Eq. 2) between 6 sets of species tree sampled 

from a Bayesian posterior distribution of species trees obtained via MCMC. Each of the 6 sets 

consists of 10 species tree sampled sequentially from the posterior MCMC samples (see text for 

further details). 
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