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Abstract 

Background 

Estimates of relationships among Staphylococcus species have been hampered by poor and 

inconsistent resolution of phylogenies based largely on single gene analyses incorporating 



only a limited taxon sample. As such, the evolutionary relationships and hierarchical 

classification schemes among species have not been confidently established. Here, we 

address these points through analyses of DNA sequence data from multiple loci (16S rRNA 

gene, dnaJ, rpoB, and tuf gene fragments) using multiple Bayesian and maximum likelihood 

phylogenetic approaches that incorporate nearly all recognized Staphylococcus taxa. 

Results 

We estimated the phylogeny of fifty-seven Staphylococcus taxa using partitioned-model 

Bayesian and maximum likelihood analysis, as well as Bayesian gene-tree species-tree 

methods. Regardless of methodology, we found broad agreement among methods that the 

current cluster groups require revision, although there was some disagreement among 

methods in resolution of higher order relationships. Based on our phylogenetic estimates, we 

propose a refined classification for Staphylococcus with species being classified into 15 

cluster groups (based on molecular data) that adhere to six species groups (based on 

phenotypic properties) 

Conclusions 

Our findings are in general agreement with gene tree-based reports of the staphylococcal 

phylogeny, although we identify multiple previously unreported relationships among species. 

Our results support the general importance of such multilocus assessments as a standard in 

microbial studies to more robustly infer relationships among recognized and newly 

discovered lineages. 

Background 

The genus Staphylococcus currently contains more than 60 species and subspecies. Many are 

of clinical, agricultural, and economic interest because they lead to high levels of infection 

among human populations or agricultural loss within the dairy, swine, and poultry industries. 

Moreover, multiple species within this genus are common pathogens in non-human animals 

and thus should be monitored with concern as these animals provide reservoirs for pathogenic 

bacteria [1-3]. Although seemingly uncommon, host switching is an important mechanism in 

the evolution of Staphylococcus. For example, in S. aureus, human-to-poultry [4] and bovine-

to-human [3] host switches have been observed. As such, a thorough understanding of 

species relatedness is a necessity for understanding host-pathogen interactions within this 

genus [5-7]. 

Many previous estimates of the staphylococcal phylogeny have been based on single locus 

gene trees, which in many cases exhibit differing topologies. As such, robust species tree 

estimations have proved to be difficult. Historically, staphylococcal species identification has 

been a laborious task, requiring multiple biochemical and genotypic methodologies [6,8]. 

Fortunately, more efficient and reliable assays based on PCR and DNA sequencing have 

become commonplace as part of the identification process of novel species (and 

differentiating closely related species). As with most bacterial systems, the 16S rRNA gene 

continues to be the most common method for staphylococcal species identification, although 

its utility is limited due to high sequence similarity among different staphylococcal species 

[9,10]. For this reason, increased emphasis has recently been devoted towards identifying 

additional genes for use in species identification that offer greater taxonomic resolution 



between closely related species, while also limiting the incidence of misidentification. Such 

genes as rpoB (β-subunit of RNA polymerase), tuf (elongation factor Tu), and dnaJ (heat 

shock protein 40), have been found useful for the identification of staphylococcal species. 

With the exception of one study where dnaJ and rpoB were concatenated and assessed under 

a single evolutionary model [11], each has only been analyzed singularly in a phylogenetic 

context. 

We targeted two related primary goals in this study. First, we aimed to utilize a multilocus 

phylogenetic dataset to critically evaluate the proposed cluster groupings of species of 

Staphylococcus, and to amend these groupings to reflect estimates of phylogeny. Second, on 

a broader scale, we aimed to infer the deeper phylogenetic relationships among cluster groups 

of all Staphylococcus species using multilocus data analyzed under different strategies 

including concatenated and species-tree methods. We analyzed a large multilocus 

Staphylococcus dataset in multiple ways to thoroughly explore the phylogenetic signal in the 

data, and provide robust confirmatory evidence for the relationships among species. We first 

analyzed the combined four-gene dataset using partitioned Bayesian and maximum likelihood 

analyses, in which a single species tree was inferred. Such probabilistic methods of 

phylogeny are particularly powerful as they incorporate alternative models of character 

evolution into the analysis and search for a tree that ultimately maximizes the probability of 

data given the tree [12,13]. Their accuracy, however, can be dependent on the complexity and 

biological realism of the models of sequence evolution used. 

There is a tradeoff between having enough parameters to accurately capture the complexity 

of sequence evolution in a multilocus dataset, while not having more parameters than can be 

accurately estimated from the data [14-17]. We therefore tested multiple differently 

partitioned model schemes to identify which best fit the multilocus dataset. Generally, we 

expect such partitioned model analysis of the combined (concatenated) dataset will have the 

best power for inferring the phylogeny of Staphylococcus, as long as basic assumptions of the 

approach are met. The most important of these assumptions is that all the underlying gene 

trees are the same as the species tree. There are, however, situations where gene trees and 

species tree are not the same [18,19], or where systematic error in gene-tree estimation may 

lead to overconfidence in an incorrect species tree [20]. There is some indication, however, 

that in such cases, maximum likelihood bootstrap support values may be more sensitive to 

conflicting phylogenetic signals in the data than Bayesian posterior probability support for 

nodes, although both concatenated data analysis approaches are likely to experience some 

error [21-23]. 

Therefore, we also used an alternative approach to estimate relationships among species of 

Staphylococcus in which gene trees are estimated separately, and jointly considered to 

estimate an underlying species tree. This approach, called Bayesian Estimation of Species 

Trees analysis [24], thereby avoids concatenation of multiple loci, and estimates a species 

tree based on a model that accounts for deep coalescence of gene trees. Although this 

approach does not specifically model all possible scenarios that may violate the assumptions 

of the concatenated analysis, comparisons of results between this approach and concatenated 

analyses provides added perspective on the relative robustness of species-level phylogenetic 

inferences. 



Methods 

DNA sequence acquisition and alignment 

DNA sequences for a total of four genes from 57 staphylococcal species, and two outgroup 

species (Macrococcus caseolyticus - strain JCSJ5402, and Bacillus subtilis - strain 168) were 

downloaded from NCBI's GenBank. For each species included in the analysis, sequences 

were specifically downloaded from the type strain. The four loci collected included the non-

coding 16S rRNA gene, and the three protein coding genes: dnaJ, rpoB, and tuf. The list of 

all species analyzed in this study with the accession numbers for each of the four gene 

fragments is given in Additional file 1: Table S1. 

Nucleotide sequences were aligned using ClustalW in MEGA 4.1 [25], with manual 

adjustment to ensure that complete codons remained in tact for downstream analyses. 

Regions of high variability were omitted from the alignments because assessment of 

homology was questionable [15]. This was only observed to be the case for dnaJ in which 

nucleotide positions 63–93 in the original sequence was omitted. Additional manual codon 

adjustment of this region did not improve the alignment and thus, was omitted. Secondary 

structure predictions (i.e. stem and loop regions) for 16S rRNA gene fragments were 

estimated using the RNAalifold approach [26,27]. The data matrix and trees have been 

deposited in TreeBase ([28]; http://purl.org/phylo/treebase/phylows/study/TB2:S12505). 

Analyses of incongruence length differences (ILD; [29]) among partitions of the dataset were 

performed using PAUP* 4.0 [30]. Nucleotide diversities and species divergence calculations 

were performed using MEGA 4.1 [25] and DnaSP v5 [31]. 

Nucleotide model selection 

Models of nucleotide evolution for each gene and nominal partition of the data were 

estimated using jModelTest v0.1.1 [32,33] based on Akaike Information Criterion (AIC). For 

the purpose of model testing (and later partitioned Bayesian analyses) we divided the dataset 

by gene, and into biologically relevant subsets: coding versus non-coding gene fragments, 

codon position, and stem versus loop secondary structures (for the 16S rRNA gene fragment). 

These individual partitions, and the best-fit evolutionary model selected for each partition, are 

shown in Additional file 2: Table S2. 

For analyses of the combined data with partitioned models, we formulated nine different 

partitioning schemes. These were designed to provide a hierarchical spectrum of model 

complexity, and parameter richness, with increasing partitioning of biologically reasonable 

sets of the data (Table 1). The simplest model (MB1) was a single evolutionary model 

(GTR + ΓI) fit to the entire dataset followed by additional models (MB2-MB9) that were 

created by the addition of dataset partitions among and within non-coding and coding gene 

fragments (Table 1). 



Table 1 Description of alternative model partitioning strategies tested for fit to the 

combined nucleotide data 

Model 

name 

# of 

partitions 

# of free model 

parameters 

Description of model partitions 

MB1 1 10 Single model for concatenated dataset 

MB2 2 13 16S; All protein coding gene fragments (dnaJ; 

rpoB; tuf) 

MB3 4 29 Independent partition for each gene fragment (16S; 

dnaJ; rpoB; tuf) 

MB4 7 48 16S; two partitions for each gene fragment (codon 

positions 1 and 2; codon position 3) 

MB5 8 62 16S, stems; 16S, loops; two partitions for each gene 

fragment (codon positions 1 and 2; codon position 3) 

MB6 10 78 16S; three partitions for each gene fragment (codon 

positions 1, 2, and 3, separately) 

MB7 11 92 16S, stems; 16S, loops; three partitions for each 

gene fragment (codon positions 1, 2 and 3, 

separately) 

MB8 3 26 16S, stems; 16S, loops; All protein coding gene 

fragments (dnaJ; rpoB; tuf) 

MB9 5 43 16S, stems; 16S, loops; Independent partition for 

each protein coding gene fragment (dnaJ; rpoB; tuf) 

Bayesian phylogenetic analysis 

Bayesian inference (BI) was carried out using the Metropolis-Hastings coupled Markov chain 

Monte Carlo method in MrBayes v3.1.2 [34,35] and BEST v2.3.1 [36]. All Bayesian 

phylogenetic analyses performed in this study were carried out using the STOKES IBM High 

Performance Computing Cluster at the University of Central Florida. MPI-enabled versions 

of MrBayes v3.1.2 and BEST v2.3.1 were compiled and run in parallel [37]. For each BI run, 

gaps in alignments were treated as missing data. For each MrBayes analysis, two independent 

BI runs were carried out using random starting trees with one cold chain and three heated 

chains (following program defaults). Each model was assessed in triplicate with summary 

statistics being estimated from all runs. 

In addition to performing BI runs in MrBayes on the unpartitioned multilocus dataset (using 

the evolutionary model specified by AIC), eight additional models were assessed where 

independent models of evolution were applied to different nucleotide regions within the 

combined dataset (refer to nucleotide model selection section). This was achieved by using 

the “unlink” command in MrBayes v3.1.2. Each BI run consisted of 4 million generations 

with every 100 steps being sampled. As verified using Tracer v1.5 [38], stationarity was 

reached in all BI runs prior to 500 000 generations and a conservative burn-in of 1 million 

(25%) generations was performed. To verify that additional sampling (i.e., increasing the 

number of generations) for MrBayes runs would not affect the outcome of the data, a final 

run of 20 million generations with sampling every 1 000 steps and a burn-in of 4 million 

generations was performed. 

In addition to reconstructing phylogenies using MrBayes v3.1.2, Bayesian phylogenetic 

reconstruction was also performed using BEST v2.3.1, which is a modified version of 



MrBayes. BEST was implemented by setting the prior for BEST = 1, and unlinking 

topologies, branch lengths, and mutation rates across loci. For each independent BEST 

analysis, four simultaneous runs consisting of 16 chains each were performed for 20 million 

generations with sampling every 1 000 generations. A prior for theta was set at 0.04, based on 

the mean estimates of theta for the dataset calculated in DnaSP and MEGA 4.1. Consistent 

with previous reports [39,40], run convergence was only achieved by setting a uniform prior 

for branch lengths (prset brlenspr = clock:uniform). As with all BI runs, nucleotide regions 

were assigned nucleotide substitution models based on AIC, estimated in jModelTest. 

Assessment of BI runs 

All partitioning strategies employed using MrBayes were run in triplicate to verify 

reproducibility while BEST analyses were run two separate times. Subsequently, MrBayes 

and BEST runs, under each model, were assessed using multiple criteria to determine the 

success of each model and the overall best-fit model. Bayes factors (BF; 2∆lnB10) were 

calculated from estimates of the harmonic mean of the posterior distribution of cold chain 

likelihoods. Consistent with previous reports [14,16,41], we set a cutoff of BF > 10 to support 

one model over another. Recently, multiple studies have suggested that biases introduced by 

using the harmonic mean estimator may practically affect model selection using BF [42-45]. 

Based on our results however, we discuss why such biases are practically tolerable in this 

study (i.e., model choice has little effect on topology and nodal support). 

Akaike weights (Aw) [46] were also used to identify best-fit partitioned models [17]. Initially 

AIC values were calculated by the equation AIC = −2lnL + 2 k where k equals the total 

number of free parameters within the model. For small samples sets, where the sample size 

(n) to free parameter (k) ratio is <40, it has been suggested that a small-sample bias 

adjustment be applied to the AIC calculation, thus calculating AICc instead [47,48]. The 

sample size of the staphylococcal dataset (with outgroups) is 59 and the minimum number of 

free parameters was 10 for model MB1. As such, the n/k ratio was always <40, so we 

calculated the AICc instead. The equation for - -  . The 

∆AICc was then calculated by subtracting the model with the minimum AICc (AICcmin) (i.e. 

highest lnL) from the ith model using the equation –  . Following 

calculations of the ∆AICc for each model, Aw were calculated using the equation 

 . By this equation, the relative likelihood of a model given the 

data is normalized over all models and thus, the greater the Aw for a given model, the greater 

the relative support for that model [14]. 

Further assessment of model performance was based on examining the output of model 

parameters and carried out by analyses of multiple additional features. Posterior distributions 

of parameters and analysis of trace plots were assessed for failed convergence and 

stationarity using Tracer v1.5 [38]. Also, because model overparameterization has been 

linked to estimates of tree length in partitioned Bayesian analyses [49], we also compared 

tree length estimates among runs. 

Maximum likelihood analysis 

Phylogenetic reconstruction using maximum likelihood (ML) analysis was carried out using 

the program GARLI v.2.0 [50], using default parameters except where specified. 

Phylogenetic estimates using ML were performed using both the combined, unpartitioned 



dataset as well as the combined dataset partitioned by locus (Additional file 2: Table S2). 

Five ML search replicates were run for each dataset using random starting trees, and up to 

five million generations were employed for each run unless the scoring topology lnL did not 

improve by ≥ 0.01 for 20 000 generations, in which case the run was terminated prematurely 

and the next bootstrap replicate was begun. Two hundred bootstrap replicates were conducted 

for each run and consensus trees were generated using the SumTrees v.3.0 software which is 

part of the DendroPy v.3.7 phylogenetic computing library [51]. Likelihood ratio tests 

(LRTs) [13,52] were performed to compare competing model partitioning schemes, M0 and 

M1. Statistical support for model M0 over M1 (or vice versa) was assessed using the Chi-

square distribution for q degrees of freedom (df) where q equals the difference in the number 

of free parameters between model M0 and M1 (df = 19 in this study) [52]. 

Results 

Gene fragments used for analyses contain differing degrees of variability 

Among the four gene fragments analyzed in this study, 3 521 nucleotides were included (1 

481 from the 16S rRNA gene fragment, 816 from dnaJ, 474 from rpoB, and 750 from tuf) for 

59 different taxa. The dataset contained 1 016 parsimony-informative sites and 2 142 

conserved sites. The nucleotide diversity of the 16S rRNA gene fragment was 0.029 

substitutions (subs.) per site, while that for dnaJ, rpoB, and tuf was 0.241, 0.147, and 0.097 

subs. per site, respectively. The average theta per site for the combined dataset was 0.04. The 

lowest interspecies divergence was between S. pseudintermedius and S. delphini (0.014 subs. 

per site). The highest estimated evolutionary divergence within the complete dataset was 

between S. piscifermentans and the outgroup species, B. subtilis (0.266 subs. per site), while 

the highest level among staphylococcal taxa was between S. piscifermentans and S. vitulinus 

(0.182 subs. per site). 

Individual gene tree analyses 

Phylogenetic analysis of individual genes revealed that 16S rRNA and dnaJ fragments 

resolved similar major clades but different branching orders of these clades (Additional file 3: 

Figure S1). Similarly, most relationships and clusters of species within rpoB and tuf gene 

trees were in general agreement with the 16S and dnaJ gene trees, but multiple higher-level 

clades were present in these that were unique (Additional file 3: Figure S1). Thus, individual 

gene tree analyses supported similar clusters of species, but varying arrangements of these 

clusters relative to one another. As expected, nodal support values for individual gene trees 

were relatively low, particularly for nodes more deeply nested in the tree. Formal partition 

homogeneity (or incongruence length difference test [29]) tests indicated that there were 

significant differences between all partitions except for 16S rRNA gene and dnaJ. This test, 

however, is based on parsimony criteria and known to have highly variant type-1 and type-2 

error rates depending on different tree structures, rates across sites, and informative site 

contents among datasets [53,54]. We therefore interpret these results cautiously, as the 

potential for there to exist some conflicting phylogenetic signal among genes, and incorporate 

this caution in later interpretations of the combined data analyses. Such conflicting signal 

might result from multiple sources, including phylogenetic estimation error leading to 

different inferences from individual gene trees, and/or different underlying evolutionary 

histories among genes due to lateral gene transfer or lineage sorting effects. 



Dataset partitioning improves likelihood estimates of Bayesian phylogenetic 

analyses 

Regardless of partitioning strategy employed, all Bayesian inference (BI) runs yielded highly 

reproducible phylogenetic inferences (Additional file 4: Figure S2). Within MrBayes BI runs, 

log-likelihood (lnL) estimates rapidly reached stationarity and convergence. Log-likelihoods 

ranged from −38830.66 (MB1) to −37421.36 (MB7) with intermediate lnL generally 

increasing with partition complexity (Figure 1). Dataset partitioning for concatenated BI runs 

(i.e., MrBayes) ranged from the most simple (unpartitioned) to highly complex (11 partitions; 

Table 1). Initial assessments of Bayes factors (BF; 2∆lnB10) were used to compare 

topological likelihoods across each different model. As shown in Table 2, a large disparity 

between the lnL from various partitioning strategies was observed. Partitioning strategy MB7 

yielded the highest lnL (Figure 1) with a BF > 230 that of the next best model (MB5) and 

>2800 compared to the unpartitioned model (MB1). Model MB7 was the most complex 

strategy (11 different partitions) with a separate model for each codon position of each 

protein-coding gene, as well as stem versus loop regions of the 16S rRNA gene fragment 

(Table 1). The model with the second highest likelihood was MB5 whereby the 16S rRNA 

gene fragment was again partitioned by stem and loop position, however, only two 

independent partitions were applied to each individual protein coding gene fragment (codon 

positions 1 & 2; and codon position 3). Using AICc for the Aw calculation identified model 

MB5 as the best-fit model (Aw = 1.000; Table 2). Thus, based on lnL-centric criteria, models 

MB5 and MB7 are the preferred models for the concatenated data analysis. 

Figure 1 Dataset partitioning improves model fit. Shown are log-likelihood plots 

comparing partitioning strategies used for concatenated BI runs. Error bars represent the 

mean ± 95% confidence interval 

Table 2 Bayes factors and Akaike weights reveal differences in model fitness for the 

different partitioning strategies applied to the concatenated, multilocus dataset 

M1  
a
2∆lnB10 Akaike 

Weight M0  MB1 MB2 MB3 MB4 MB5 MB6 MB7 MB8 MB9 

MB1 --- 412.11 700.90 2371.08 2584.86 2462.04 2818.59 603.91 891.39 0.000 

MB2 -412.11 --- 288.79 1958.97 2172.74 2049.93 2406.48 191.80 479.28 0.000 

MB3 -700.90 -288.79 --- 1670.18 1883.96 1761.14 2117.70 -96.99 190.49 0.000 

MB4 -2371.08 -1958.97 -1670.18 --- 213.77 90.96 447.51 -1767.17 -1479.69 0.000 

MB5 -2584.86 -2172.74 -1883.96 -213.77 --- -122.82 233.74 -1980.95 -1693.46 1.000 

MB6 -2462.04 -2049.93 -1761.14 -90.96 122.82 --- 356.56 -1858.13 -1570.65 0.000 

MB7 -2818.59 -2406.48 -2117.70 -447.51 -233.74 -356.56 --- -2214.68 -1927.20 0.000 

MB8 -603.91 -191.80 96.99 1767.17 1980.95 1858.13 2214.68 --- 287.48 0.000 

MB9 -891.39 -479.28 -190.49 1479.69 1693.46 1570.65 1927.20 -287.48 --- 0.000 
a
Positive Bayes factors (2∆lnB10) support model M0 over model M1 and negative values 

support model M1 over model M0. Bayes factor support values >10 are shown in bold 

Inspection of TL identified that the more highly partitioned models (MB4-MB7) yielded TLs 

between two and four times longer than less partitioned models (MB1-3; MB8-9; refer to 

Additional file 5: Figures S3 and Additional file 6: Figure S4). The more highly-partitioned 

model runs with high TLs also tended to show very high TL variance among generations, 

resulting in quite broad TL posteriors (Additional file 5: Figures S3 and Additional file 6: 

Figure S4). Considering this evidence for unreliability in the more highly partitioned model 

runs, we tempered our choice of partitioning scheme. A combination of lnL (BF and Aw) and 



TL reliability criteria suggest that MB8 is the preferred partitioned model, since it had better 

lnL than other models (e.g., MB1-2) while resulting TL estimates were apparently uninflated 

and of low variance (Additional file 5: Figure S3 and Additional file 6: Figure S4). Hereafter, 

we discuss results based on the BI runs from model MB8, and identify any notable 

differences between this model and others (particularly MB5 and MB7). It is important to 

note however that while lnL and TLs differed between partitioning scheme models, tree 

topologies remained nearly identical (discussed below). It is possible that the inconsistency 

between the BF-based support for more highly partitioned models versus evidence for model 

overparameterization that we observed may be related to calculation of BFs based on 

harmonic mean approximations of marginal likelihoods, which has been shown previously 

[42,43,45]. Thus, while no substantial topology or support value differences were observed 

between results from different models, we have taken a conservative approach and chosen to 

use MB8 as the preferred model because more complex models exhibited excessive TL 

indicative of overparameterization. 

Bayesian and maximum likelihood analyses of concatenated data 

Regardless of the model under which the concatenated staphylococcal dataset was analyzed 

using BI, high overall nodal support was observed for nearly all nodes in the tree. Tree 

topologies were highly concordant between different partitioned model schemes, with only a 

single topological inconsistency between models. In addition to the placement of S. devriesei 

shown in Figure 2, this species was also estimated to form a clade with S. lugdunensis under 

four models (MB2-4, and MB6). Additionally, under models MB5 and MB7, S. devriesei was 

estimated to diverge after S. lugdunensis, forming the sister lineage to a clade containing S. 

haemolyticus and S. hominis (data not shown). Nodal support for these alternative 

relationships was quite low (avg. Pp = ~0.64), however, in comparison to the support of S. 

devriesei forming a clade with S. haemolyticus (Pp = 0.85; Figure 2). Beside this single 

topological difference, nodal support differed by very little among models (Pp ≤ 0.02), with 

only two cases (MB1 and MB6) in which a single node differed by a Pp = 0.05. 

Figure 2 Bayesian MCMC analysis of the concatenated dataset. Shown is a 50% majority 

rule phylogram from BI runs under the combined, partitioned dataset in MrBayes. Numbers 

represent posterior probabilities with grey-filled circles representing a posterior probability of 

1.00 

Bayesian concatenated phylogenetic estimates supported strongly (Pp = 1.00) the separation 

of staphylococcal species into two deeply-diverging major clades (Figure 2). One of the two 

clades contained all of the oxidase positive staphylococcal species (frequently referred to as 

the Sciuri group), with the second group containing all other oxidase negative staphylococcal 

species (Figure 2). The single lineage S. auricularis formed the sister group to all other 

members of this second group, with the next most basally-diverging lineage in this clade 

including the following species: S. simulans, S. condimenti, S. carnosus (both subspecies), 

and S. piscifermentans (Pp = 1.00). The subspecies of S. carnosus proved to cluster tightly 

together, as expected, and formed the sister group to S. condimenti. 

The next major divergence within the staphylococcal tree was that of a strongly supported 

clade (Pp = 1.00) containing the pathogenic species S. saprophyticus (Figure 2). This clade 

contained many members of the polyphyletic group of coagulase negative, novobiocin 

resistant species, and included the recently described species S. massiliensis [55] and S. 

pettenkoferi [56]. Following this divergence, species of heightened clinical significance 



diverged, including S. aureus, S. epidermidis, S. warneri, S. haemolyticus and S. lugdunensis, 

which formed a well-supported clade (Pp = 1.00) (Figure 2). We also found that the most 

recently discovered Staphylococcus species, S. agnetis [57] formed a strongly supported 

clade (Pp = 1.00) with S. hyicus, for which S. chromogenes was the sister lineage. 

The concatenated ML estimation of the staphylococcal phylogeny was consistent with 

reconstructions from the concatenated BI method (Figure 3). Log-likelihoods under a single 

evolutionary model were −39186.39 while partitioning the concatenated dataset by individual 

gene yielded a lnL = −36632.34. The likelihood-ratio test supported the partitioned dataset as 

the best-fit model (p < 0.0001; likelihood-ratio (−2∆lnL) = 5 108; degrees of freedom 

(df) = 19). Topologies estimated under both models were identical except for a single 

discordant node: S. devriesei formed a single-species sister taxon to S. haemolyticus and S. 

hominis in the unpartitioned dataset (bootstrap support (BS) = 59%), while in the dataset 

partitioned by individual gene, S. devriesei shared a clade with S. haemolyticus (BS = 72%). 

Aside from minor discrepancies between the concatenated ML and BI topologies (Figure 3), 

high topological agreement was observed. Although weakly supported (BS < 50%), S. felis 

diverged more deeply under ML than BI, forming a single species sister lineage to the larger 

clade containing S. hyicus, S. intermedius, and S. schleiferi in the ML tree (Figure 3). Among 

the oxidase containing species clade, ML estimated a more basal divergence of S. lentus and 

S. stepanovicii than was estimated under the concatenated BI approach (Figure 3). 

Comparisons between BI and ML nodal support values indicated that support values at 

discordant nodes between BI and ML methods ranged from Pp = 0.75-0.98 for BI and 

BS = 30-98% for ML (Figure 4). Thus, differences in the tree and support values between 

methods included both weakly and strongly supported nodes. 

Figure 3 Maximum likelihood phylogram of staphylococcal species. Shown is a ML 

phylogram obtained from the assessment of the locus-partitioned dataset (similar to MB3) 

using GARLI v.2.0 [50]. The consensus phylogram was generated from 200 bootstrap 

replicates with five ML search replicates per bootstrap. Nodes receiving Pp = 1.00 and/or 

BS = 100% are indicated by grey-filled circles; otherwise, MrBayes posterior probability is 

shown in red text, and ML bootstrap support is shown in black text. Clades that were not 

present in MrBayes are indicated by a red § 

Figure 4 Comparison of nodal support between MrBayes and maximum likelihood 

methodologies. Shown is a scatter plot comparing the differences in MrBayes posterior 

probabilities (Pp) and maximum likelihood (ML) bootstrap support (BS) for identical nodes 

(Figure 3). Open circles represent Pp support for discordant nodes present in MrBayes and 

absent in ML. Open triangles represent BS values for discordant nodes present in ML and 

absent in MrBayes. Note that MrBayes exhibits heightened overall node support as compared 

to ML 

Concatenated and unconcatenated phylogenetic methods broadly agree on 

clustering of staphylococcal species 

Estimation of staphylococcal phylogeny was also performed on the unconcatenated dataset 

using Bayesian Estimation of Species Trees (BEST) analysis [36]. BEST analyses treated 

each locus as an independent gene, thereby inferring the likely species tree given four 

independent gene trees. Trees inferred from duplicate BEST runs were identical in topology 

with no nodes differing by Pp > 0.05, indicating that multiple runs converged on nearly the 



same posterior tree space. With three exceptions, the BEST tree resolved the same major 

clades as the concatenated BI and ML trees, although in some cases the relative branching 

order of major clades differed (Additional file 7: Figure S5). BEST estimated that S. 

auricularis formed a clade with S. sciuri (Pp = 0.99) as opposed to the later (less basal) 

divergence of S. auricularis observed in concatenated BI and ML estimates (Pp = 1.00 and 

BS = 100%, respectively; Additional file 7: Figure S5). BEST also estimated a more divergent 

relationship between S. kloosii and S. arlettae, whereas these two species formed an exclusive 

clade in concatenated data analyses. The concatenated BI and ML analyses estimated S. felis 

to diverge more basally than was inferred by BEST analyses, although support for the 

placement of S. felis was generally low among all methods (BEST, Pp < 0.50; concatenated 

BI, Pp = 0.75; concatenated ML, BS < 50%). 

In order to achieve convergence using BEST method, we chose to enforce a molecular clock 

to reduce the number of parameters in the analysis. To evaluate the impact of this parametric 

restriction on the resulting inferences, we also conducted BEST analyses without enforcing a 

molecular clock. Only minor differences in cluster groupings between analyses were 

observed where S. agnetis and S. hyicus formed a clade with S. chromogenes as the sister 

taxon in Additional file 7: Figure S5, while the alternate (non-clock BEST) analysis estimated 

S. agnetis and S. chromogenes to form a clade, sister to S. hyicus (data not shown). However, 

because convergence was not achievable without application of a strict molecular clock, 

overall node supports for this tree tended to be lower than the clock-constrained BEST 

analysis. These results also suggest that differences in tree topology between concatenated 

methods and BEST analyses are not necessarily the result of applying a molecular clock to 

the dataset. 

To obtain a more robust estimate of the staphylococcal phylogeny using BEST, additional 

datasets were assessed in which suspected conflicting loci and taxa were omitted. Omission 

of the tuf and rpoB loci, as well as taxa for which data were missing (i.e., S. agnetis, S. 

stepanovicii, and S. devriesei), substantially altered the branching order of major clades (as 

compared to original BEST methodologies incorporating all gene fragments and taxa), 

resulting in higher agreement with the concatenated BI and ML analyses (Figure 5). These 

data also support our previous ILD tests that suggested a significant difference between all 

loci except 16S rRNA and dnaJ (above). With the exception of a few notable differences, the 

modified BEST analysis was similar to the concatenated BI and ML analyses (Figure 5). The 

modified BEST analysis estimated, with weak support, the later divergence of S. auricularis 

as compared to BI and ML runs. This analysis also estimated a more basal divergence of the 

clades containing S. muscae, S. hyicus, and S. intermedius with a later divergence of clades 

containing S. pettenkoferi, S. arlettae, S. saprophyticus, and S. lugdunensis as compared to 

concatenated analyses (Figure 5). S. felis and S. lutrae shared a weakly supported clade 

(Pp = 0.44) within this BEST analysis as compared to belonging to different clades (described 

above) in concatenated BI and ML data analyses. S. gallinarum formed a clade (Pp = 1.00) in 

the modified BEST analysis with S. arlettae, and S. kloosii while concatenated analyses 

estimated S. arlettae to form an exclusive clade with S. kloosii and S. gallinarum belonging to 

a more distant clade (compare Figures 3 and 5). 

Figure 5 Inference of the staphylococcal phylogeny using Bayesian estimation of species 

trees (BEST) methodology on 16S rRNA and dnaJ gene fragments. Shown is a consensus 

phylogram of the staphylococcal species tree generated under the BEST methodology 

incorporating only 16S rRNA and dnaJ gene fragments. Each of the two gene fragments were 

treated as an individual locus for which individual gene trees were estimated. Numbers 



represent posterior probabilities with grey-filled circles representing a posterior probability of 

1.00. Refer to Additional file 7: Figure S5 for the BEST analysis incorporating all four gene 

fragments 

Discussion 

Using multilocus data to infer the Staphylococcus phylogeny 

Staphylococcus is a species-rich genus of importance from both a human health and 

economic perspective. Relevant to the first goal of this study, our results provide strong 

evidence that the current groupings of Staphylococcus species require revision, and provide a 

clear consensus across analyses on how this could be done to reflect inferred evolutionary 

relationships among species groups. The second goal of the study was to infer higher-level 

relationships among species and cluster groups, and our results provide good evidence for 

much consensus across methods although there remains some alternative hypotheses for such 

higher-level relationships that differed between methods. To infer phylogenies relevant to 

both species-grouping and higher-level relationships, we used a combination of Bayesian and 

maximum likelihood analyses of multilocus data. We found that both Bayesian and 

maximum likelihood analysis of multilocus data yielded high-resolution species trees with 

overall high nodal support values for relationships among Staphylococcus species. We also 

found that partitioned-model analysis of the combined dataset, versus the concatenation-free 

analysis using BEST, produced near-identical estimates of the species composition of major 

clades and putative revised cluster groupings (i.e., more recent relationships). 

In contrast to broad consensus across methods for resolution of relationships among more 

recent groupings of species, concatenated and gene-tree-based methods (BEST) inferred 

several alternative relationships among more ancient lineages of staphylococcal species. It is 

not entirely clear, however, what the source of these differences are (e.g., different 

evolutionary histories among genes being differentially resolved between methods, difference 

in how methods extracted signal from the multilocus data, etc.). It is notable that our finding 

that the BEST method inferred similar major clades as the concatenated methods, but inferred 

a different branching order among these major clades, has also been observed in other studies 

[40]. Such an observation may be indicative that although the phylogenetic signal contained 

within gene trees affords robust estimates of membership of particular species to major 

clades, conflicting signal or simply very little signal for deeper relationships among major 

lineages is available from single gene tree inferences (as in BEST). Our analysis of individual 

gene trees further supports this hypothesis whereby there appears to be substantial 

disagreement about higher-level relationships, but individual gene trees are consistent with 

one another regarding the placement of species within clusters towards the tips of the tree. It 

is notable that the modified BEST analysis, in which only two gene fragments were 

incorporated, more consistently resolved higher order relationships with the concatenated BI 

and ML methodologies. This suggests further that conflicting signal within the other two 

gene fragments was contributing to the discord among the original BEST analysis, 

incorporating all four loci. 

It has been shown that staphylococcal species routinely laterally transfer genes [58], and it is 

therefore reasonable to consider that lateral gene transfer might complicate inference of 

phylogeny in this study. For example, lateral transfer (potentially combined with 

phylogenetic inference error) may explain instances of disagreement between gene trees and 



multi-locus inferences. Particularly in the case of inferring bacterial phylogeny, generally 

high instances of gene transfer inherently complicate inference of species-level trees, and 

even raise philosophical questions about the meaning of such species-level inferences [59]. 

Our results do, however, provide good evidence that there is indeed phylogenetic signal of an 

underlying species-level tree with many shared relationships across analytical methods, and 

this tree contrasts strongly with the existing higher-level classification scheme of the group 

that was based on less robust inferences methods. Our results largely agree across methods 

about the membership of species and subspecies to major clades, and thus provide new 

important confirmatory information sufficient for refining the nomenclature of the group. 

Historically, staphylococcal species have been clustered into between four and eleven species 

groups [6,60-64]. Most of these groupings, however, were inferred based on a single locus 

with a small number of staphylococcal taxa. Phylogenetic estimates from this study suggest 

the separation of staphylococcal species into six major staphylococcal species groups 

comprised of 15 refined cluster groups (Figure 6). We have used our Bayesian, partitioned-

model concatenated data estimate (i.e., Figure 2) as the focal phylogeny for illustrating 

evolutionary groupings of Staphylococcus since this phylogeny was also supported by our 

ML analysis, and previous reports on phylogenetic estimates of the staphylococcal 

phylogeny. Additionally, this phylogeny was essentially the same regarding these cluster 

groups based on the BEST tree. Current knowledge of phenotypic properties and 

relationships among staphylococci are also in agreement with the staphylococcal phylogeny 

estimated from concatenated analyses. For example, concatenated analyses resolved the 

oxidase positive species as being the sister to the remaining species, which is sensible given 

that outgroups of staphylococcal species are also oxidase positive; this relationship was also 

observed in the modified BEST analyses. For the purposes of reference, we indicate on the 

concatenated BI tree (Figure 6) where ML concatenated and BEST inferences differed. 

Wherever possible, we have attempted to name cluster groups and species groups following 

the original nomenclature put forth by Takahashi et al. [64], while recognizing only 

evolutionarily distinct, monophyletic groupings based on our estimates of phylogeny. As with 

previous analyses, cluster groups represent a single monophyletic clade of species, based on 

branching pattern [64], while species groups follow those previously described by Kloos et 

al. [65] and present cluster groups sharing similar phenotypic properties [64,66]. 

Figure 6 Staphylococcal species can be combined into six species groups and 15 cluster 

groups. Shown is a summary phylogram adapted from Figure 2 with clades collapsed to 

represent staphylococcal groupings. Whenever possible, cluster and species group names 

were kept consistent with [64]. Cluster groups have been color-coded to represent: blue, 

species that are novobiocin resistant, coagulase negative, and oxidase positive; green, species 

that are novobiocin susceptible, coagulase negative, and oxidase negative; orange, species 

that are novobiocin resistant, coagulase negative, and oxidase negative; purple, species that 

are novobiocin susceptible, coagulase positive, and oxidase negative; and red, species that are 

novobiocin susceptible, coagulase variable, and oxidase negative. Color scheme exceptions 

are: 
#
S. schleiferi schleiferi is coagulase negative; *S. simiae is coagulase negative; 

‡
S. 

hominis novobiosepticus is novobiocin resistant; and 
†
S. equorum linens is novobiocin 

susceptible. Members of each cluster group are listed below the cluster group name. Nodes 

receiving Pp = 1.00 or BS = 100% are indicated by grey-filled circles; otherwise, MrBayes 

posterior probability is shown in red text, BEST posterior probability is shown in blue text, 

and ML bootstrap support is shown in black text. Clades that were not present in BEST or 

ML are indicated by a blue or black §, respectively 



Refined phylogeny and classification of Staphylococcus spp. 

Consistent with previous studies [55,63,64,67,68], our analyses identified the monophyletic 

group containing the novobiocin-resistant, oxidase positive species (Sciuri group; Figure 6, 

blue cluster group) as the sister group to all other Staphylococcus. This cluster group also 

contains the recently discovered species, S. stepanovicii [11]. Within this group, we inferred a 

close relationship, with little sequence divergence, between S. vitulinus and S. pulvereri (BI 

and BEST Pp = 1.00; BS = 100%), potentially supporting the reclassification of S. pulvereri as 

a later synonym of S. vitulinus [67]. After the basal divergence of the Sciuri group, the 

second lineage to diverge from the remaining staphylococcal lineages was the oxidase 

negative Auricularis group, containing only S. auricularis (Figure 6). Our phylogeny 

therefore suggests that cytochrome C oxidase was lost in Staphylococcus sometime in the 

common ancestor of S. auricularis and the remaining Staphylococcus species, after their 

divergence from the Sciuri group (Figure 6, red star). 

Our phylogenetic placement of S. auricularis as the sister lineage to all non-Sciuri group 

staphylococci is unique to our study, and we find strong support for this inference (MrBayes 

Pp = 1.00 and ML BS = 99%). Based on the 16S rRNA gene alone, Takahashi et al. [64] 

estimated that S. auricularis shared a common ancestor with the S. saprophyticus, S. 

lugdunensis, S. haemolyticus, S. warneri, S. epidermidis and S. aureus cluster groups. More 

recently, Ghebremedhin et al. [6] estimated a similar relationship to that of Takahashi et al. 

based on 16S rRNA gene alone. Analyses of subsequent gene fragments, however, yielded 

varying relationship estimates for S. auricularis, and no previous studies have found 

particularly strong support for the placement of this lineage. For example, Ghebremedhin et 

al. [6] recovered bootstrap support of 31% for a clade containing S. auricularis and S. kloosii 

based on the 16S rRNA gene, although average BS support across their tree was particularly 

low, at BS = 52%. Similarly, S. auricularis was placed as the sister lineage to S. kloosii plus 

the S. saprophyticus group, with BS = 25% based on analysis of the 16S rRNA gene by 

Takahashi et al. [64]. 

We inferred that the next lineage of Staphylococcus to diverge was the Simulans species 

group (Figure 6), which contains four species that are all novobiocin susceptible and 

coagulase negative. For consistency with previous nomenclature [6,64], we refer to this clade 

as the Simulans-Carnosus cluster group and the species group as the Simulans group (Figure 

6). Our estimate of relationships among species of this group agree with previous studies, 

although the inclusion of S. condimenti in our trees is novel [6,64]. We inferred a single clade 

(Simulans-Carnosus cluster) containing the novobiocin susceptible, coagulase negative 

species, S. simulans, S. condimenti, S. carnosus and S. piscifermentans. 

Following the split of these three early-diverging lineages, the remaining Staphylococcus 

species diverged into three large species groups. The first of these to diverge from the 

remaining was the Saprophyticus species group (Figure 6), which we inferred consists of four 

cluster groups. Within this species group, the Pettenkoferi-Massiliensis cluster group contains 

novobiocin susceptible species while all of the remaining members of the Saprophyticus 

group are novobiocin resistant. Thus, it seems that an alternative gyrase B gene conferring 

novobiocin resistance may have been acquired in this clade sometime after the Pettenkoferi-

Massiliensis cluster group diverged from the rest of the Saprophyticus species group. Based 

on analysis of the 16S rRNA gene, Al Masalma et al. [55] reported the newly discovered 

species S. massiliensis to be a member of the Simulans group, although they failed to recover 

this relationship in analyses of the dnaJ, rpoB, and tuf genes, where they instead placed it 



with S. pettenkoferi as we have here. It is also notable that the close relationship between 

these coagulase-negative species was also suggested based on their phenotypic similarities 

across a range of biochemical tests [55]. Additionally, in the Saprophyticus cluster group, we 

inferred a close relationship between S. equorum, S. succinus, S. saprophyticus, and S. 

xylosus with S. gallinarum as the sister lineage to these four species. The placement of S. 

gallinarum in other studies is variable, but on multiple occasions has clustered with the 

Arlettae-Kloosii group [6,57,60,63,64]. This alternative placement of S. gallinarum seems 

reasonable as we find the Arlettae-Kloosii cluster group to be closely related to the 

Saprophyticus cluster group (Figure 6). 

The Epidermidis-Aureus species group contained five cluster groups, including the most 

common taxa of heightened clinical significance [6]. In general, our estimates of relationships 

among these species are consistent with previous reconstructions [57,64]. Relationships 

within the Haemolyticus cluster group also agree with previous estimates [64], with the 

placement of the recently discovered coagulase-negative bovine strain, S. devriesei, forming a 

clade with S. haemolyticus [69]. Lastly, the Hyicus-Intermedius species group contained 

species of the "S. hyicus-S. intermedius cluster group" originally proposed by Takahashi et al. 

[64] based on a 16S rRNA gene dataset, and additional studies have found similar estimates 

of relationships based on analyses of other loci [1,6,60,61,63,70]. The limited number of taxa 

assessed in these studies has, however, prevented a more detailed understanding of species 

relationships within this species group prior to our analysis here. Moreover, recent novel 

species discovery (in particular S. rostri [70], S. microti [1], and S. agnetis [57]) has also 

contributed to the enhanced diversity of the Hyicus-Intermedius group. We have divided this 

species group into three cluster groups based on their phylogenetic relationships, which is 

also supported by their phenotypic diversities (Figure 6). Species among the Intermedius 

cluster group are all coagulase positive, excepting S. schleiferi schleiferi. Interestingly, S. 

schleiferi coagulans is coagulase positive, consistent with the other members of this cluster 

group, implying a recent loss in S. schleiferi schleiferi. In contrast, the Muscae cluster group 

contains only coagulase negative species (S. muscae, S. rostri, and S. microti). Within the last 

two years, both S. rostri [70] and S. microti [1] were discovered and found to cluster with S. 

muscae, thus altering previously known relationships within this species group. The Hyicus 

cluster group is coagulase-variable, including coagulase positive (S. hyicus), negative (S. 

chromogenes, S. felis), and variable (S. agnetis) species (Figure 6, red cluster group). 

Conclusions 

Through the analysis of multiple loci under a variety of phylogenetic methods, we achieved 

one of our main goals of inferring a robust estimate of the cluster groupings among 

staphylococcal species. We have used this estimate of cluster groupings to refine the current 

knowledge of the systematics and nomenclature for this important genus. Our results also 

contribute to a presumably more accurate understanding of the higher-level relationships 

among Staphylococcus species, although we do note that there are several outstanding 

questions left by the alternative resolutions of our concatenated versus species-tree-based 

inferences. We have attempted to present these yet unresolved inferences in a transparent 

fashion such that future work might directly test remaining alternative hypotheses and add 

further clarity to the relatively small number of remaining questions about relationships 

among staphylococcal species. The availability of such a comprehensive estimate of the 

evolutionary origins of, and relationships among, staphylococci provides an important 

context for understanding patterns of gain and loss of genetic and physiological attributes, 

and the potential role of lateral gene transfer in both pathologically-relevant phenotypes and 



in estimation of phylogenetic relationships among species. Such questions are of particular 

relevance considering the clinical and economical significance of some Staphylococcus 

species. Approaches such as this will provide a more natural classification of species based 

on phylogenetic inferences and lend support to future evolutionarily-informed studies of 

microbial diversity and physiology. 
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Additional file 2: Table S2. Evolutionary models for each partition were chosen based on 

AIC using jModelTest. 
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Additional file 3: Figure S1. Gene trees for individual loci assessed in this study. Shown 

are Bayesian 50% majority rule phylograms for A) the 16S rRNA, B) dnaJ, C) rpoB, and D) 

tuf gene fragments. MrBayes was run under the same conditions as those used for 

concatenated analyses with evolutionary model specified for whole gene fragments in 



Additional file 2: Table S2. Numbers represent posterior probabilities with grey-filled circles 

representing a posterior support of 1.00. 
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Additional file 4: Figure S2. Bayesian inferences of phylogeny are highly reproducible, 

regardless of model employed. Shown are plots of post-burnin generational log likelihoods 

(lnL) from five representative partitioning strategies across triplicate concatenated BI runs 

(A); and duplicate BEST runs (B). All runs were highly reproducible regardless of 

methodology and partitioning strategy. 
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Additional file 5: Figure S3. Tree length (TL) analysis indicates that 

overparameterization may be occurring within more highly partitioned datasets. Shown 

are post-burnin generational TL estimates for partitioning strategies assessed in this study. 

Note that as the complexity of partitioning increases evidence of increased TL and failed 

convergence is observed. 
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Additional file 6: Figure S4. Model partitioning increases the mean tree length (TL) and 

run variance. Shown is a box plot indicating the mean TL and 95% confidence interval 

among partitioning strategies. 
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Additional file 7: Figure S5. Inference of phylogeny using Bayesian estimation of species 

trees (BEST). Shown is a consensus phylogram of the staphylococcal species tree generated 

using all four gene fragments under the BEST methodology. Each gene fragment was treated 

as an individual locus for which individual gene trees were estimated (similar to MB3). 

Numbers represent posterior probabilities with grey-filled circles representing a posterior 

probability of 1.00. 
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