
 
 

 

  

Abstract— Automated DNA sequencing produces a large 
amount of raw DNA sequence data that then needs to be 
classified, organized, and annotation. One major application is 
the comparison of new DNA sequences with previously known 
classified sequences. In this paper we present a new approach 
to perform these comparisons. From a kernel of previously 
classified DNA sequences, we identify distinctive oligomers, or 
short DNA sequences, that are infrequent and thus highly 
unique within the kernel. We then search for the presence of 
these distinctive oligomers in the new unclassified DNA 
sequences. Their presence indicates a possible relation between 
a new DNA sequence and every previously classified DNA 
sequence that shares the distinctive oligomer. Ultimately, 
unclassified sequences are related to classified sequences with 
which they share the highest number of distinctive oligomers. 
We explain the details of our technique and show some 
experimental results in a kernel of immunoglobulin DNA 
sequences. 

 

I. BACKGROUND 
HE genetic instructions for the formation and 
functioning of all known living creatures are encoded in 

DNA molecules. DNA molecules are made of alternating 
sequences of 4 monomeric components: Adenine, Cytosine, 
Guanine and Thymine. These 4 monomers, known as 
nucleotides, are usually abbreviated by their respective 
initials: A, C, G, and T. In the typical double-stranded DNA 
polymer, Adenine molecules are complementary to Thymine 
molecules, and vice versa, because they bond with each 
other across the axis of the DNA double helix. This 
complementarity is also true of the other two nucleotides, 
Cytosine and Guanine. The well-known double helix 
configuration of a DNA molecule is produced when a DNA 
strand is paired side by side with another strand with the 
complementary nucleotides of the first. Because of this 
molecular complementarity, knowing the composition of 
one of the DNA strands is enough to describe both strands 
of a DNA molecule.  
 
Various techniques are currently in use for DNA sequence 
determination[4]. Recent developments on these techniques 
aim to minimize sequencing time and cost, while 
maximizing sequenced DNA throughput. Among these 
techniques, our research used parallel pyrosequencing[5] 
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implemented on the 454-FLX sequencing instrument from 
454 Life Sciences[6]. These machines may yield millions of 
sequence reads, and about one billion total nucleotide 
sequences per day. To harness such sequencing power, new 
methods for classifying and comparing newly sequenced 
DNA to sequences previously sequenced and annotated is 
necessary.  
 
Many DNA sequences are being found, studied, named, 
classified, and annotated every day. Various public 
databases constantly collect and organize this new 
information, like the database maintained by the National 
Center for Biotechnology Information (NCBI)[3]. When new 
DNA material is sequenced, it is usually compared against 
database records. For example, the NCBI web site provides 
access to BLAST, a well-known sequencing and alignment 
tool[2].This and similar tools provide a good starting point 
when studying DNA material of which very little else is 
known. However, when studying DNA sequences that are 
known to belong to a certain category, a more focused 
approach could provide much more rapid analytical results 
of comparisons than could BLAST algorithms. For example, 
our research is focused in the study on human 
immunoglobulins. These are proteins used by the immune 
system to detect and destroy foreign molecules that invade 
the body. Immunoglobulins may attach to the foreign 
molecules (be they viruses, foreign proteins, bacteria) and 
tag them for destruction by other factions of the immune 
system. By the attachment itself, they may also neutralize 
the molecule’s or pathogen’s dangerous capabilities. Like 
most eukaryotic genes, immunoglobulin genes are 
comprised of multiple exon regions that are eventually 
spliced together to form the immunoglobulin protein 
sequences A typical immunoglobulin DNA sequence is 
usually divided in regions, each one with a specific function 
in the lifecycle of the immunoglobulin. The region in charge 
of its adaptability to various types of attackers is encoded in 
three identifiable consecutive sections, or exons, V-exon, D-
exon, and the J-exon. In our study, immunoglobulin DNA 
strands were matched against a database of previously 
identified V-exons and J-exons. 
 
In this paper, we present a methodology to classify newly 
sequenced raw DNA sequences as related to previously 
classified DNA sequence or sequences. The set of classified 
DNA sequences will be known as the kernel. From a kernel 
we identify distinctive oligomers that characterize the 
classified sequences[1]. We define an oligomer of size n to be 
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any DNA subsequence with exactly n nucleotides in a 
sequence. A single DNA sequence of size m (where m is 
bigger than or equal to n), may contain up to m-n+1 
different oligomers of size n. Oligomer repetition may 
reduce this number. A similar consideration is to be made in 
a kernel with k DNA sequences. If all the sequences in the 
kernel are of size m, then the maximum number of different 
oligomers in the kernel, k·(m-n+1), may be reduced by 
repetitions. This will be particularly true, if n is small, 
because repetitions will be very likely with only 4 possible 
nucleotides for every position on the oligomer.  
 
A distinctive oligomer is an oligomer with a low number of 
repetitions in a kernel. The cut-off value, c, is the maximum 
number of repetitions allowed in a kernel for an oligomer to 
be considered distinctive. The set of distinctive oligomers 
from a kernel is directly proportional to the cut-off value. 
Also, the longer an oligomer is, the larger the likelihood that 
it will be distinctive. These are not necessarily the only 
factors on determining oligomer distinctiveness. Additions, 
replacements, deletions and mutations of nucleotides in a 
DNA sequence may also contribute to the emergence of 
distinctive oligomers. The set of all distinctive oligomers of 
size n contained in a DNA sequence that belongs to a kernel 
constitutes the n-signature of the DNA sequence in the 
kernel under a given cut-off value. Ideal n-signatures of 
DNA sequences would discriminate among sequences of the 
same kernel, but in practice, kernel’s sequences may share 
oligomers to a certain degree, especially if they are also 
related among themselves. 
 
Our method consists of two basic steps: first, identifying 
distinctive oligomers in a kernel and determining the 
frequencies for the n-signatures of every DNA sequence in 
the kernel. Secondly, we classify the raw DNA strands as 
related to the DNA sequence or sequences which share the 
most distinctive oligomers in common. Details on these two 
steps will be shown in the following sections II and III, 
respectively. Section IV will talk about clustering DNA 
sequences. The paper will end with some final remarks in 
section V. 

II. IDENTIFYING OLIGOMERS 
Given a kernel of classified DNA sequences we find all 

distinctive oligomers of size n that appear in the population 
with a frequency that is less than or equal to a cut-off value 
of  c occurrences. The choices of oligomer size and cut-off 
value will determine the number of distinctive oligomers 
found. Oligomer size cannot be too small, because shorter 
oligomers will have too many repetitions in the kernel. On 
the other hand, large oligomer sizes would be too specific, 
and although they may characterize a classified DNA 
sequence completely, they may not be found in the raw 
DNA strands, even when the strands are related to the 
classified DNA sequences. Evolutionary changes in the raw 

DNA strands and the classified DNA sequences will be the 
main reason for this discrepancy. In our studies we explore 
oligomer sizes in between 5 and 12.  
 
Also, smaller cut-off values will mainly identify rare 
oligomers. For example a cut-off value of one will find 
unique oligomers in the kernel. However, more than one 
classified DNA sequence may share oligomers with others, 
especially if they are related; therefore considering some 
repetition is advisable to capture these relations. In our 
research we tested cut-off values from 1 to 12.  
 
To see the effect of these two parameters, we analyzed two 
different kernels, one containing DNA sequences classified 
as V-exons and another one classified as J-exons. The 
number of oligomers we found under different oligomer 
sizes and cut-off values increased proportionally with both 
parameters. Figures 1 and 2 show this trend. The curves join 
together experimental points that share the same cut-off 
value. Notice that given an oligomer size, the percentage of 
distinct oligomers found increases when the cut-off value 
increases, but at higher cut-off values this effect is less 
pronounced.  
 

Figure 1: Oligomers from a V Exon Kernel
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Figure 2: Oligomers from a J Exon Kernel
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The final choice of parameters to use may vary with the 
nature of the kernel and the application. For example, 
kernels of DNA sequences that are tightly related may 
require higher cut-off values; also, applications required to 
maximize the number of classifications of raw DNA strands 
may benefit with longer oligomer sizes. 
 
Once the oligomer size and the cut-off value are selected, 
and all distinctive oligomers in the kernel are found, for 



 
 

 

every DNA sequence in the kernel we count the number of 
occurrences of each distinctive oligomer they contain. This 
process generates a matrix of frequencies P[d][k], where d 
is the number of distinctive oligomers, and k is the number 
of classified DNA sequences in the kernel. An entry P[i][j] 
will contain the number occurrences of the distinctive 
oligomer i in the classified DNA sequence j, and the jth 
column of this matrix is the signature of the classified DNA 
sequence under this circumstances. The ith row in the matrix 
contains information about how the copies of the distinctive 
oligomer i are distributed in the kernel. An oligomer i that is 
unique to a classified DNA sequence j will have a single 
entry in the matrix at P[i][j], while an oligomer that appears 
in more than one classified DNA sequence will have 
multiple entries in the ith row. However, the matrix of 
frequencies is a sparse matrix. Most of the times, the entries 
will contain zeros and ones, but they may contain any value 
that is lesser than or equal to the cut-off value. A matrix of 
frequencies is generated for every kernel. This matrix is 
independent of the raw DNA strands and once it is 
computed, it can be used for any classification of DNA 
strands. Figure 3 shows a section of a matrix of frequencies 
with a selected sample of distinctive oligomers and 
classified DNA sequences. The oligomer size was 10 
nucleotides and the cut-off value was also 10. 
 

Figure 3: Matrix of Frequencies (sample)
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III. CLASSIFYING DNA STRANDS 
 A DNA strand may be classified as related to one of more 
already classified DNA sequences in a kernel. In order to do 
that, we will use a vector of frequencies p[k], with k 
elements, one for each of the classified DNA sequences in 
the kernel. The entries on this vector are all initialized to 
zero. We then proceed to search for all distinctive oligomers 
contained in the DNA strand. Every time we find an 
oligomer, we add its corresponding row from the matrix of 
frequencies P[d][k] onto the vector of frequencies p[k]. For 
example, if a DNA strand contains only the first two distinct 
oligomers shown in Figure 3 (CTGAACCTCA and 
CGGTCTACAA), then its vector of frequencies will be the 
addition, column by column, of the first two rows in the 
matrix of frequencies.   When this process ends, the entries 
in the vector of frequencies will indicate the relative strength 
in which every classified DNA sequence is related to the 
raw DNA strand. The DNA sequence or sequences with the 
highest value are the most likely to be related to the raw 

DNA strand, because they indicate how many oligomers 
they have in common.  
Figure 4, in the next page, shows the results of the 
classification of a DNA strand with a kernel of 
immunoglobulin sequences. The signatures for the kernel 
were produced with an oligomer size of 10 and cut-off value 
of 10. Two V-exons and one J-exon produce the highest 
scores from their respective vector of frequencies. As 
indicated before, the scores indicate the relative support we 
have to consider these exons as related to the DNA strand. 
The numbers can be compared with elements of the same 
vector of frequencies, but not against other vectors, they are 
relative weights.  The big difference between the weight for 
the first J-exon (weight of 46) and the other J-exons (weight 
of 2) clearly indicates that the first J-exon has a greater 
relationship with the DNA strand. The partial alignment of 
the three J-exons with the end of the DNA strand highlights 
the common distinctive oligomers. These distinctive 
oligomers are represented as capital letters. They may 
overlap, being this the reason why we see stretches of 
capital letters longer than the oligomer size of 10. Because 
the J-exon sequences are short we can appreciate the relation 
between the scores in the classification and the number of 
oligomers in the DNA sequences. The winner J-exon 
contains 46 distinctive oligomers overlapping each other, 
and all of them match the DNA strand. The other J-exons 
only have 2 distinctive oligomers each, also overlapping and 
matching the DNA strand. In this case the numbers 46 and 2 
are the exact weights we obtained in the classification, 
indicating the number of distinctive oligomers in common. 
This will always be the case when the matrix of frequencies 
contains entries that are only zeroes and ones. The same 
happens in the classification of the DNA strand with the V-
exons, but we cannot appreciate it in Figure 4 because it 
only contains a partial view of the alignment at the 
beginning of the DNA strand. What we can observe instead 
is that both V-exons provide a pretty good match to the 
DNA strand. This raises the possibility that both V-exons 
may be related and in fact could be close enough to form a 
cluster of similar DNA sequences. How we dealt with this 
situation is the topic of the following section. 

IV. FINDING CLUSTERS OF RELATED DNA 
SEQUENCES 

 Whenever a DNA strand is closely related to more than 
one classified DNA sequence in a kernel, it bears the 
question if the classified DNA sequences are so related than 
they should form a cluster, rather than stand on their own. 
To discover if such clustering exists, we computed a square 
matrix of similarities S[k][k] among all the k sequences in 
the kernel. The element S[i][j] of this matrix contains a 
measurement of the similarity between the ith and the jth 
DNA sequences. We obtained these measurements by 
applying the classification algorithm described in the 
previous section to all classified DNA sequences in the 
kernel, a sort of bootstrapping process. As a consequence of 
this process, the matrix of similarities is made of vector of 
frequencies p[k] for all DNA sequences in the kernel.  



 
 

 

  
Figure 4: Classification of DNA strand 

Sample : S_572 was matched with the following V-exons: 
   VExon 19            Score (relative weight): 73 
   VExon 29            Score (relative weight): 72 

Partial alignment of the beginning of sample with matched V-exons 
-------------------------------------------------------------------------------------------------------  
       | 0         1         2         3         4         5         6         7         8         9 
       | 0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 
------------------------------------------------------------------------------------------------------- 
S_572  |        gGGGGCTGCAGCTGCTCCTCAAGTACTATTCTGGAGACCCAGTGGTTCAAGGAGTGAACGGCTTCGAGGCTGAGTTCAGCAAGAGC 
Vexon19| catggccgtggcctccagtttCTCCTCAAGTACTATTCgggaaACCCAGTGGTTCAAGGAGTGAACGGCTTCGAGGCTGAGTTCAGCAAGAGt 
Vexon29| ccgcggcaGGGGCTGCAGCTGCTCCTCAAGTACTATTCaGGAGACCCAGTGGTTCAAGGAGTGAAtGGCTTCGAGGCTGAGTTCAGCAAGAGt 
------------------------------------------------------------------------------------------------------- 
Sample : S_572 was matched with the following J-exons: 
   JExon 31            Score (relative weight): 46 
   JExon 05            Score (relative weight):  2 
   JExon 02            Score (relative weight):  2 

Partial alignment of sample’s end with matched J-exons 
-------------------------------------------------------------------------------------------------------  
       |  0         1         2         3         4         5         6         7         8         9 
       |  0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 
------------------------------------------------------------------------------------------------------- 
S_572  |  gtgtacTTCTGTGCTATGAATTCTGGGACTTACCAGAGGTTTGGAACTGGGACAAAACTCCAAGTCGTTCCAAacatccagaacccagaac 
Jexon31|                  caAATTCTGGGACTTACCAGAGGTTTGGAACTGGGACAAAACTCCAAGTCGTTCCAA 
Jexon05|            tagcatcctcctccttcagcaagctggtgtttgggcaggggacatccttatcAGTCGTTCCAA 
Jexon02|                ctcctgggacacccgacagatgtttTTTGGAACTGGcatagagctctttgtggagcccc 
------------------------------------------------------------------------------------------------------- 

 
 
The ith row value in the matrix of similarities is the vector of 
frequencies p[k] associated with the ith DNA sequence. The 
elements S[i][i] in its diagonal contain the total number of 
distinctive oligomers found in the ith DNA sequences. These 
values also indicate the maximum numbers for similarities 
with other DNA sequences, because no other one can share 
more distinctive oligomers with any DNA sequence than 
itself. This fact gives a mechanism to perform clustering of 
DNA sequences. 
 
Whenever a DNA strand is classified as related to a set of 
DNA sequences, using the process outlined in the previous 
section, we consider the matrix of similarities and evaluate if 
the entries for the selected DNA sequences are close enough 
to consider them as a cluster. A threshold value for 
clustering, T, will be used to determine what close enough 

means. This will be a parameter for the clustering process.  
If the difference between the maximum number of 
similarities found in the diagonal S[i][i] of the matrix of 
references and the value for similarity with another DNA 
sequence S[i][j] is smaller than or equal to the threshold T, 
we can declare the DNA sequences to possibly be part of the 
same cluster, and the DNA strand related to the cluster. 
 
Figure 5 shows the classification of another DNA strand. 
This time the strand is associated with a cluster of two DNA 
sequences. The cluster is created because the difference 
between the entries in the similarity matrix was 2, smaller 
than 20, the threshold value used for clustering. As the 
partial alignment of sequences show, both DNA sequences 
were very similar to each other, even in sectors unmatched 
by the raw DNA strand.  

 
 
 

Figure 5: Classification of DNA strand to a cluster 
Sample:S_393 was matched with the following V-exons: 

VExon-39           Scores (relative weight): 104 
VExon-49           Scores (relative weight): 103 

Clustering analysis 
The following V-exons may be a cluster: 

VExon-39                   Similarity count: 245 
VExon-49                   Similarity count: 243 

Partial alignment of the beginning of sample with matched V-exons 
-------------------------------------------------------------------------------------------------------- 

|  0         1         2         3         4         5         6         7         8         9 
|  012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012 

-------------------------------------------------------------------------------------------------------- 
S_393  |                                gGGGGCTGCAGCTGCTCCTCAAGTACTATCCAGGAGACCCAGTGGTTCAAGGAGTGAATGGCT 
Vexon39|  atctgttctggtatgtccagtacccgcggcaGGGGCTGCAGCTGCTCCTCAAGTACTATCCAGGAGACCCAGTGGTTCAAGGAGTGAATGGCT 
Vexon49|  atctgttctggtatgtccagtacccgcggcaGGGGCTGCAGCTGCTCCTCAAGTACTATCCAGGAGACCCAGTGGTTCAAGGAGTGAATGGCT 
-------------------------------------------------------------------------------------------------------- 

 



 
 

 

V. FINAL REMARKS 
  We presented our technique to classify DNA strands 
using a kernel of previously known DNA sequences. We are 
currently using this technique to classify immunoglobulin 
samples from various species. This classification is a fast 
screening process to determine relations among our research 
subjects that will lead us to understand them better. We are 
currently working in a user-friendly interface to our 
algorithm for use in day-to-day analysis.  
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